1000 resultados para Billiard problems
Resumo:
The paper presents a graphical-numerical method for determining the transient stability limits of a two-machine system under the usual assumptions of constant input, no damping and constant voltage behind transient reactance. The method presented is based on the phase-plane criterion,1, 2 in contrast to the usual step-by-step and equal-area methods. For the transient stability limit of a two-machine system, under the assumptions stated, the sum of the kinetic energy and the potential energy, at the instant of fault clearing, should just be equal to the maximum value of the potential energy which the machines can accommodate with the fault cleared. The assumption of constant voltage behind transient reactance is then discarded in favour of the more accurate assumption of constant field flux linkages. Finally, the method is extended to include the effect of field decrement and damping. A number of examples corresponding to each case are worked out, and the results obtained by the proposed method are compared with those obtained by the usual methods.
Resumo:
In this paper, we treat some eigenvalue problems in periodically perforated domains and study the asymptotic behaviour of the eigenvalues and the eigenvectors when the number of holes in the domain increases to infinity Using the method of asymptotic expansion, we give explicit formula for the homogenized coefficients and expansion for eigenvalues and eigenvectors. If we denote by ε the size of each hole in the domain, then we obtain the following aysmptotic expansion for the eigenvalues: Dirichlet: λε = ε−2 λ + λ0 +O (ε), Stekloff: λε = ελ1 +O (ε2), Neumann: λε = λ0 + ελ1 +O (ε2).Using the method of energy, we prove a theorem of convergence in each case considered here. We briefly study correctors in the case of Neumann eigenvalue problem.
Resumo:
Reduction of carbon emissions is of paramount importance in the context of global warming and climate change. Countries and global companies are now engaged in understanding systematic ways of solving carbon economics problems, aimed ultimately at achieving well defined emission targets. This paper proposes mechanism design as an approach to solving carbon economics problems. The paper first introduces carbon economics issues in the world today and next focuses on carbon economics problems facing global industries. The paper identifies four problems faced by global industries: carbon credit allocation (CCA), carbon credit buying (CCB), carbon credit selling (CCS), and carbon credit exchange (CCE). It is argued that these problems are best addressed as mechanism design problems. The discipline of mechanism design is founded on game theory and is concerned with settings where a social planner faces the problem of aggregating the announced preferences of multiple agents into a collective decision, when the actual preferences are not known publicly. The paper provides an overview of mechanism design and presents the challenges involved in designing mechanisms with desirable properties. To illustrate the application of mechanism design in carbon economics,the paper describes in detail one specific problem, the carbon credit allocation problem.
Resumo:
The eigenvalues and eigenfunctions corresponding to the three-dimensional equations for the linear elastic equilibrium of a clamped plate of thickness 2ϵ, are shown to converge (in a specific sense) to the eigenvalues and eigenfunctions of the well-known two-dimensional biharmonic operator of plate theory, as ϵ approaches zero. In the process, it is found in particular that the displacements and stresses are indeed of the specific forms usually assumed a priori in the literature. It is also shown that the limit eigenvalues and eigenfunctions can be equivalently characterized as the leading terms in an asymptotic expansion of the three-dimensional solutions, in terms of powers of ϵ. The method presented here applies equally well to the stationary problem of linear plate theory, as shown elsewhere by P. Destuynder.
Resumo:
The DMS-FEM, which enables functional approximations with C(1) or still higher inter-element continuity within an FEM-based meshing of the domain, has recently been proposed by Sunilkumar and Roy [39,40]. Through numerical explorations on linear elasto-static problems, the method was found to have conspicuously superior convergence characteristics as well as higher numerical stability against locking. These observations motivate the present study, which aims at extending and exploring the DMS-FEM to (geometrically) nonlinear elasto-static problems of interest in solid mechanics and assessing its numerical performance vis-a-vis the FEM. In particular, the DMS-FEM is shown to vastly outperform the FEM (presently implemented through the commercial software ANSYS (R)) as the former requires fewer linearization and load steps to achieve convergence. In addition, in the context of nearly incompressible nonlinear systems prone to volumetric locking and with no special numerical artefacts (e.g. stabilized or mixed weak forms) employed to arrest locking, the DMS-FEM is shown to approach the incompressibility limit much more closely and with significantly fewer iterations than the FEM. The numerical findings are suggestive of the important role that higher order (uniform) continuity of the approximated field variables play in overcoming volumetric locking and the great promise that the method holds for a range of other numerically ill-conditioned problems of interest in computational structural mechanics. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The problem of generation of surface water waves at tile interface of two immiscible liquids by a onesided porous wave maker is studied in both the cases of water of infinite as well as finite depth by suitable application of the generalisation of Havelock's expansion theorem. The solution of the the problem of reflection of water waves due to a fixed porous wall is derived as a particular case.
Resumo:
A large class of scattering problems of surface water waves by vertical barriers lead to mixed boundary value problems for Laplace equation. Specific attentions are paid, in the present article, to highlight an analytical method to handle this class of problems of surface water wave scattering, when the barriers in question are non-reflecting in nature. A new set of boundary conditions is proposed for such non-reflecting barriers and tile resulting boundary value problems are handled in the linearized theory of water waves. Three basic poblems of scattering by vertical barriers are solved. The present new theory of non-reflecting vertical barriers predict new transmission coefficients and tile solutions of tile mathematical problems turn out to be extremely simple and straight forward as compared to the solution for other types of barriers handled previously.
Resumo:
A modeling framework is presented in this paper, integrating hydrologic scenarios projected from a General Circulation Model (GCM) with a water quality simulation model to quantify the future expected risk. Statistical downscaling with a Canonical Correlation Analysis (CCA) is carried out to develop the future scenarios of hydro-climate variables starting with simulations provided by a GCM. A Multiple Logistic Regression (MLR) is used to quantify the risk of Low Water Quality (LWQ) corresponding to a threshold quality level, by considering the streamflow and water temperature as explanatory variables. An Imprecise Fuzzy Waste Load Allocation Model (IFWLAM) presented in an earlier study is then used to develop adaptive policies to address the projected water quality risks. Application of the proposed methodology is demonstrated with the case study of Tunga-Bhadra river in India. The results showed that the projected changes in the hydro-climate variables tend to diminish DO levels, thus increasing the future risk levels of LWQ. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We develop a quadratic C degrees interior penalty method for linear fourth order boundary value problems with essential and natural boundary conditions of the Cahn-Hilliard type. Both a priori and a posteriori error estimates are derived. The performance of the method is illustrated by numerical experiments.
Resumo:
Error analysis for a stable C (0) interior penalty method is derived for general fourth order problems on polygonal domains under minimal regularity assumptions on the exact solution. We prove that this method exhibits quasi-optimal order of convergence in the discrete H (2), H (1) and L (2) norms. L (a) norm error estimates are also discussed. Theoretical results are demonstrated by numerical experiments.
Resumo:
This paper presents a singular edge-based smoothed finite element method (sES-FEM) for mechanics problems with singular stress fields of arbitrary order. The sES-FEM uses a basic mesh of three-noded linear triangular (T3) elements and a special layer of five-noded singular triangular elements (sT5) connected to the singular-point of the stress field. The sT5 element has an additional node on each of the two edges connected to the singular-point. It allows us to represent simple and efficient enrichment with desired terms for the displacement field near the singular-point with the satisfaction of partition-of-unity property. The stiffness matrix of the discretized system is then obtained using the assumed displacement values (not the derivatives) over smoothing domains associated with the edges of elements. An adaptive procedure for the sES-FEM is proposed to enhance the quality of the solution with minimized number of nodes. Several numerical examples are provided to validate the reliability of the present sES-FEM method. (C) 2012 Elsevier B.V. All rights reserved.
Operator-splitting finite element algorithms for computations of high-dimensional parabolic problems
Resumo:
An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This work presents a finite element-based strategy for exterior acoustical problems based on an assumed pressure form that favours outgoing waves. The resulting governing equation, weak formulation, and finite element formulation are developed both for coupled and uncoupled problems. The developed elements are very similar to conventional elements in that they are based on the standard Galerkin variational formulation and use standard Lagrange interpolation functions and standard Gaussian quadrature. In addition and in contrast to wave envelope formulations and their extensions, the developed elements can be used in the immediate vicinity of the radiator/scatterer. The method is similar to the perfectly matched layer (PML) method in the sense that each layer of elements added around the radiator absorbs acoustical waves so that no boundary condition needs to be applied at the outermost boundary where the domain is truncated. By comparing against strategies such as the PML and wave-envelope methods, we show that the relative accuracy, both in the near and far-field results, is considerably higher.
Resumo:
A few variance reduction schemes are proposed within the broad framework of a particle filter as applied to the problem of structural system identification. Whereas the first scheme uses a directional descent step, possibly of the Newton or quasi-Newton type, within the prediction stage of the filter, the second relies on replacing the more conventional Monte Carlo simulation involving pseudorandom sequence with one using quasi-random sequences along with a Brownian bridge discretization while representing the process noise terms. As evidenced through the derivations and subsequent numerical work on the identification of a shear frame, the combined effect of the proposed approaches in yielding variance-reduced estimates of the model parameters appears to be quite noticeable. DOI: 10.1061/(ASCE)EM.1943-7889.0000480. (C) 2013 American Society of Civil Engineers.