962 resultados para Bidirectional reflection distribution function
Resumo:
Plasma process like ionic nitriding and cathodic cage plasma nitriding are utilized in order to become hard surface of steels. The ionic nitriding is already accepted in the industry while cathodic cage plasma nitriding process is in industrial implementation stage. Those process depend of plasma parameters like electronic and ionic temperature (Te, Ti), species density (ne, ni) and of distribution function of these species. In the present work, the plasma used to those two processes has been observed through Optical Emission Spectroscopy OES technique in order to identify presents species in the treatment ambient and relatively quantify them. So plasma of typical mixtures like N2 H2 has been monitored through in order to study evolution of those species during the process. Moreover, it has been realized a systematic study about leaks, also thought OES, that accomplish the evolution of contaminant species arising because there is flux of atmosphere to inside nitriding chamber and in what conditions the species are sufficiently reduced. Finally, to describe the physic mechanism that acts on both coating techniques ionic nitriding and cathodic cage plasma nitriding
Resumo:
The present work proposes a Hypothesis Test to detect a shift in the variance of a series of independent normal observations using a statistic based on the p-values of the F distribution. Since the probability distribution function of this statistic is intractable, critical values were we estimated numerically through extensive simulation. A regression approach was used to simplify the quantile evaluation and extrapolation. The power of the test was simulated using Monte Carlo simulation, and the results were compared with the Chen test (1997) to prove its efficiency. Time series analysts might find the test useful to address homoscedasticity studies were at most one change might be involved.
Resumo:
There are diferent applications in Engineering that require to compute improper integrals of the first kind (integrals defined on an unbounded domain) such as: the work required to move an object from the surface of the earth to in nity (Kynetic Energy), the electric potential created by a charged sphere, the probability density function or the cumulative distribution function in Probability Theory, the values of the Gamma Functions(wich useful to compute the Beta Function used to compute trigonometrical integrals), Laplace and Fourier Transforms (very useful, for example in Differential Equations).
Resumo:
The change in the carbonaceous skeleton of nanoporous carbons during their activation has received limited attention, unlike its counterpart process in the presence of an inert atmosphere. Here we adopt a multi-method approach to elucidate this change in a poly(furfuryl alcohol)-derived carbon activated using cyclic application of oxygen saturation at 250 °C before its removal (with carbon) at 800 °C in argon. The methods used include helium pycnometry, synchrotron-based X-ray diffraction (XRD) and associated radial distribution function (RDF) analysis, transmission electron microscopy (TEM) and, uniquely, electron energy-loss spectroscopy spectrum-imaging (EELS-SI), electron nanodiffraction and fluctuation electron microscopy (FEM). Helium pycnometry indicates the solid skeleton of the carbon densifies during activation from 78% to 93% of graphite. RDF analysis, EELS-SI, and FEM all suggest this densification comes through an in-plane growth of sp2 carbon out to the medium range without commensurate increase in order normal to the plane. This process could be termed ‘graphenization’. The exact way in which this process occurs is not clear, but TEM images of the carbon before and after activation suggest it may come through removal of the more reactive carbon, breaking constraining cross-links and creating space that allows the remaining carbon material to migrate in an annealing-like process.
Resumo:
This paper shows that the proposed Rician shadowed model for multi-antenna communications allows for the unification of a wide set of models, both for multiple-input multiple-output (MIMO) and single- input single-output (SISO) communications. The MIMO Rayleigh and MIMO Rician can be deduced from the MIMO Rician shadowed, and so their SISO counterparts. Other more general SISO models, besides the Rician shadowed, are included in the model, such as the κ-μ, and its recent generalization, the κ-μ shadowed model. Moreover, the SISO η-μ and Nakagami-q models are also included in the MIMO Rician shadowed model. The literature already presents the probability density function (pdf) of the Rician shadowed Gram channel matrix in terms of the well-known gamma- Wishart distribution. We here derive its moment generating function in a tractable form. Closed- form expressions for the cumulative distribution function and the pdf of the maximum eigenvalue are also carried out.
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
Méthodologie: Modèle de régression quantile de variable instrumentale pour données de Panel utilisant la fonction de production partielle
Resumo:
We start in Chapter 2 to investigate linear matrix-valued SDEs and the Itô-stochastic Magnus expansion. The Itô-stochastic Magnus expansion provides an efficient numerical scheme to solve matrix-valued SDEs. We show convergence of the expansion up to a stopping time τ and provide an asymptotic estimate of the cumulative distribution function of τ. Moreover, we show how to apply it to solve SPDEs with one and two spatial dimensions by combining it with the method of lines with high accuracy. We will see that the Magnus expansion allows us to use GPU techniques leading to major performance improvements compared to a standard Euler-Maruyama scheme. In Chapter 3, we study a short-rate model in a Cox-Ingersoll-Ross (CIR) framework for negative interest rates. We define the short rate as the difference of two independent CIR processes and add a deterministic shift to guarantee a perfect fit to the market term structure. We show how to use the Gram-Charlier expansion to efficiently calibrate the model to the market swaption surface and price Bermudan swaptions with good accuracy. We are taking two different perspectives for rating transition modelling. In Section 4.4, we study inhomogeneous continuous-time Markov chains (ICTMC) as a candidate for a rating model with deterministic rating transitions. We extend this model by taking a Lie group perspective in Section 4.5, to allow for stochastic rating transitions. In both cases, we will compare the most popular choices for a change of measure technique and show how to efficiently calibrate both models to the available historical rating data and market default probabilities. At the very end, we apply the techniques shown in this thesis to minimize the collateral-inclusive Credit/ Debit Valuation Adjustments under the constraint of small collateral postings by using a collateral account dependent on rating trigger.
Resumo:
La quantificazione non invasiva delle caratteristiche microstrutturali del cervello, utilizzando la diffusion MRI (dMRI), è diventato un campo sempre più interessante e complesso negli ultimi due decenni. Attualmente la dMRI è l’unica tecnica che permette di sondare le proprietà diffusive dell’acqua, in vivo, grazie alla quale è possibile inferire informazioni su scala mesoscopica, scala in cui si manifestano le prime alterazioni di malattie neurodegenerative, da tale tipo di dettaglio è potenzialmente possibile sviluppare dei biomarcatori specifici per le fasi iniziali di malattie neurodegenerative. L’evoluzione hardware degli scanner clinici, hanno permesso lo sviluppo di modelli di dMRI avanzati basati su acquisizioni multi shell, i quali permettono di ovviare alle limitazioni della Diffusion Tensor Imaging, in particolare tali modelli permettono una migliore ricostruzione trattografica dei fasci di sostanza bianca, grazie ad un’accurata stima della Orientation Distribution Function e la stima quantitativa di parametri che hanno permesso di raggiungere una miglior comprensione della microstruttura della sostanza bianca e delle sue eventuali deviazioni dalla norma. L’identificazione di biomarcatori sensibili alle prime alterazioni microstrutturali delle malattie neurodegenerative è uno degli obbiettivi principali di tali modelli, in quanto consentirebbero una diagnosi precoce e di conseguenza un trattamento terapeutico tempestivo prima di una significante perdità cellulare. La trattazione è suddivisa in una prima parte di descrizione delle nozioni fisiche di base della dMRI, dell’imaging del tensore di diffusione e le relative limitazioni, ed in una seconda parte dove sono analizzati tre modelli avanzati di dMRI: Diffusion Kurtosis Imaging, Neurite Orientation Dispersion and Density Imaging e Multi Shell Multi Tissue Constrained Spherical Deconvolution. L'obiettivo della trattazione è quello di offrire una panoramica sulle potenzialità di tali modelli.
Resumo:
Within the classification of orbits in axisymmetric stellar systems, we present a new algorithm able to automatically classify the orbits according to their nature. The algorithm involves the application of the correlation integral method to the surface of section of the orbit; fitting the cumulative distribution function built with the consequents in the surface of section of the orbit, we can obtain the value of its logarithmic slope m which is directly related to the orbit’s nature: for slopes m ≈ 1 we expect the orbit to be regular, for slopes m ≈ 2 we expect it to be chaotic. With this method we have a fast and reliable way to classify orbits and, furthermore, we provide an analytical expression of the probability that an orbit is regular or chaotic given the logarithmic slope m of its correlation integral. Although this method works statistically well, the underlying algorithm can fail in some cases, misclassifying individual orbits under some peculiar circumstances. The performance of the algorithm benefits from a rich sampling of the traces of the SoS, which can be obtained with long numerical integration of orbits. Finally we note that the algorithm does not differentiate between the subtypes of regular orbits: resonantly trapped and untrapped orbits. Such distinction would be a useful feature, which we leave for future work. Since the result of the analysis is a probability linked to a Gaussian distribution, for the very definition of distribution, some orbits even if they have a certain nature are classified as belonging to the opposite class and create the probabilistic tails of the distribution. So while the method produces fair statistical results, it lacks in absolute classification precision.
Resumo:
This work was supported by a grant from the UK Economic and Social Research Council (ES/L010437/1).
Resumo:
This work presents a reflection on Design education and specifically on the role of Drawing in this area. As a subject, Design has expanded its field of action expanding into new areas such as Experience Design or Service Design. It became necessary for the designer to have more than an education based on technological knowledge or know-how. Many authors like Meredith Davis, Don Norman or Jamie Hobson point out the urgency to review the curricula of Design courses because nowadays “… design is more than appearance, design is about interaction, about strategy and about services. Designers change social behavior” (Norman 2011). When shifting from a product-centered design to a person-centered design (in a structure, a service or in a relationship) what should the function of drawing in a design course be? What should its curriculum be? Our work methodology will be to confront today’s perspectives on design theory and practice in an attempt to add to the discussion on the methodological strategies in design teaching in the contemporary context.
Resumo:
This work presents a reflection on Design education and specifically on the role of Drawing in this area. As a subject, Design has expanded its field of action expanding into new areas such as Experience Design or Service Design. It became necessary for the designer to have more than an education based on technological knowledge or know-how. Many authors like Meredith Davis, Don Norman or Jamie Hobson point out the urgency to review the curricula of Design courses because nowadays “ … design is more than appearance, design is about interaction, about strategy and about services. Designers change social behavior” (Norman, 2011) When shifting from a product-centered design to a person-centered design (in a structure, a service or in a relationship) what should the function of drawing in a design course be? What should its curriculum be? Our work methodology will be to confront today’s perspectives on design theory and practice in an attempt to add to the discussion on the methodological strategies in design teaching in the contemporary context.
Resumo:
Objective: To evaluate the impact that the distribution of emphysema has on clinical and functional severity in patients with COPD. Methods: The distribution of the emphysema was analyzed in COPD patients, who were classified according to a 5-point visual classification system of lung CT findings. We assessed the influence of emphysema distribution type on the clinical and functional presentation of COPD. We also evaluated hypoxemia after the six-minute walk test (6MWT) and determined the six-minute walk distance (6MWD). Results: Eighty-six patients were included. The mean age was 65.2 ± 12.2 years, 91.9% were male, and all but one were smokers (mean smoking history, 62.7 ± 38.4 pack-years). The emphysema distribution was categorized as obviously upper lung-predominant (type 1), in 36.0% of the patients; slightly upper lung-predominant (type 2), in 25.6%; homogeneous between the upper and lower lung (type 3), in 16.3%; and slightly lower lung-predominant (type 4), in 22.1%. Type 2 emphysema distribution was associated with lower FEV1 , FVC, FEV1 /FVC ratio, and DLCO. In comparison with the type 1 patients, the type 4 patients were more likely to have an FEV1 < 65% of the predicted value (OR = 6.91, 95% CI: 1.43-33.45; p = 0.016), a 6MWD < 350 m (OR = 6.36, 95% CI: 1.26-32.18; p = 0.025), and post-6MWT hypoxemia (OR = 32.66, 95% CI: 3.26-326.84; p = 0.003). The type 3 patients had a higher RV/TLC ratio, although the difference was not significant. Conclusions: The severity of COPD appears to be greater in type 4 patients, and type 3 patients tend to have greater hyperinflation. The distribution of emphysema could have a major impact on functional parameters and should be considered in the evaluation of COPD patients.