996 resultados para Bering Sea controversy.
Resumo:
Taxonomic composition and distribution of planktonic foraminifera are studied in section of Core GC-11 penetrated through Upper Quaternary sediments of the Bowers Ridge western slope, south Bering Sea. It is shown that structure of foraminiferal assemblage and productivity varied substantially during the last 32000 calendar years in response to changes in surface water temperatures and water mass circulation in the North Pacific including the Bering Sea. Productivity was maximal during the deglaciation epoch, being notably lower in Holocene and minimal at glaciation time.
Resumo:
Dinocysts from cores collected in the Chukchi Sea from the shelf edge to the lower slope were used to reconstruct changes in sea surface conditions and sea ice cover using modern analogue techniques. Holocene sequences have been recovered in a down-slope core (B15: 2135 m, 75°44'N, sedimentation rate of ~1 cm/kyr) and in a shelf core (P1: 201 m, 73°41'N, sedimentation rate of ~22 cm/kyr). The shelf record spanning about 8000 years suggests high-frequency centennial oscillations of sea surface conditions and a significant reduction of the sea ice at circa 6000 and 2500 calendar (cal) years B.P. The condensed offshore record (B15) reveals an early postglacial optimum with minimum sea ice cover prior to 12,000 cal years B.P., which corresponds to a terrestrial climate optimum in Bering Sea area. Dinocyst data indicate extensive sea ice cover (>10 months/yr) from 12,000 to 6000 cal years B.P. followed by a general trend of decreasing sea ice and increasing sea surface salinity conditions, superimposed on large-amplitude millennial-scale oscillations. In contrast, d18O data in mesopelagic foraminifers (Neogloboquadrina pachyderma) and benthic foraminifers (Cibicides wuellerstorfi) reveal maximum subsurface temperature and thus maximum inflow of the North Atlantic water around 8000 cal years B.P., followed by a trend toward cooling of the subsurface to bottom water masses. Sea-surface to subsurface conditions estimated from dinocysts and d18O data in foraminifers thus suggest a decoupling between the surface water layer and the intermediate North Atlantic water mass with the existence of a sharp halocline and a reverse thermocline, especially before 6000 years B.P. The overall data and sea ice reconstructions from core B15 are consistent with strong sea ice convergence in the western Arctic during the early Holocene as suggested on the basis of climate model experiments including sea ice dynamics, matching a higher inflow rate of North Atlantic Water.
Resumo:
The 2006 inter-sessional Science Board and Governing Council meeting: A note from the Chairman (pdf, 0.1 Mb) Future Integrative Science Program – Progress report (pdf, 0.2 Mb) Big-picture synthesis requires understanding the small and "in-between" stuff - A summary of the CCCC Synthesis Symposium (pdf, 0.4 Mb) PICES Calendar (pdf, 0.4 Mb) Integration of ecological indicators for the North Pacific with emphasis on the Bering Sea (pdf, 0.2 Mb) Time series of the Northeast Pacific: A symposium to mark the 50th anniversary of Line-P (pdf, 0.1 Mb) PICES hosts an ESSAS workshop in St. Petersberg, Russia (pdf, 0.2 Mb) Professor Mikhail N. Koshlyakov (pdf, 0.5 Mb) The state of the western North Pacific in the second half of 2005 (pdf, 0.8 Mb) Recent trends in waters of the subarctic NE Pacific (pdf, 0.2 Mb) Unusual invertebrates and fish observed in the Gulf of Alaska, 2004-2005 (pdf, 0.1 Mb) The Bering Sea: Current status and recent events (pdf, 0.2 Mb) The Year of the Euphausiid (pdf, 0.01 Mb) Michio J. Kishi awarded 2005 Uda Prize by the Japan Society of Fisheries Oceanography (pdf, 0.03 Mb)