966 resultados para Bayesian point estimate
Resumo:
Determining sensitivity and specificity of a postoperative infection surveillance process is a difficult undertaking. Because postoperative infections are rare, vast numbers of negative results exist, and it is often not reasonable to assess them all. This study gives a methodological framework for estimating sensitivity and specificity by taking only a small sample of the number of patients who test negative and comparing their findings to the reference or “gold standard” rather than comparing the findings of all patients to the gold standard. It provides a formula for deriving confidence intervals for these estimates and a guide to minimum requirements for sampling results.
Resumo:
The main objective of this PhD was to further develop Bayesian spatio-temporal models (specifically the Conditional Autoregressive (CAR) class of models), for the analysis of sparse disease outcomes such as birth defects. The motivation for the thesis arose from problems encountered when analyzing a large birth defect registry in New South Wales. The specific components and related research objectives of the thesis were developed from gaps in the literature on current formulations of the CAR model, and health service planning requirements. Data from a large probabilistically-linked database from 1990 to 2004, consisting of fields from two separate registries: the Birth Defect Registry (BDR) and Midwives Data Collection (MDC) were used in the analyses in this thesis. The main objective was split into smaller goals. The first goal was to determine how the specification of the neighbourhood weight matrix will affect the smoothing properties of the CAR model, and this is the focus of chapter 6. Secondly, I hoped to evaluate the usefulness of incorporating a zero-inflated Poisson (ZIP) component as well as a shared-component model in terms of modeling a sparse outcome, and this is carried out in chapter 7. The third goal was to identify optimal sampling and sample size schemes designed to select individual level data for a hybrid ecological spatial model, and this is done in chapter 8. Finally, I wanted to put together the earlier improvements to the CAR model, and along with demographic projections, provide forecasts for birth defects at the SLA level. Chapter 9 describes how this is done. For the first objective, I examined a series of neighbourhood weight matrices, and showed how smoothing the relative risk estimates according to similarity by an important covariate (i.e. maternal age) helped improve the model’s ability to recover the underlying risk, as compared to the traditional adjacency (specifically the Queen) method of applying weights. Next, to address the sparseness and excess zeros commonly encountered in the analysis of rare outcomes such as birth defects, I compared a few models, including an extension of the usual Poisson model to encompass excess zeros in the data. This was achieved via a mixture model, which also encompassed the shared component model to improve on the estimation of sparse counts through borrowing strength across a shared component (e.g. latent risk factor/s) with the referent outcome (caesarean section was used in this example). Using the Deviance Information Criteria (DIC), I showed how the proposed model performed better than the usual models, but only when both outcomes shared a strong spatial correlation. The next objective involved identifying the optimal sampling and sample size strategy for incorporating individual-level data with areal covariates in a hybrid study design. I performed extensive simulation studies, evaluating thirteen different sampling schemes along with variations in sample size. This was done in the context of an ecological regression model that incorporated spatial correlation in the outcomes, as well as accommodating both individual and areal measures of covariates. Using the Average Mean Squared Error (AMSE), I showed how a simple random sample of 20% of the SLAs, followed by selecting all cases in the SLAs chosen, along with an equal number of controls, provided the lowest AMSE. The final objective involved combining the improved spatio-temporal CAR model with population (i.e. women) forecasts, to provide 30-year annual estimates of birth defects at the Statistical Local Area (SLA) level in New South Wales, Australia. The projections were illustrated using sixteen different SLAs, representing the various areal measures of socio-economic status and remoteness. A sensitivity analysis of the assumptions used in the projection was also undertaken. By the end of the thesis, I will show how challenges in the spatial analysis of rare diseases such as birth defects can be addressed, by specifically formulating the neighbourhood weight matrix to smooth according to a key covariate (i.e. maternal age), incorporating a ZIP component to model excess zeros in outcomes and borrowing strength from a referent outcome (i.e. caesarean counts). An efficient strategy to sample individual-level data and sample size considerations for rare disease will also be presented. Finally, projections in birth defect categories at the SLA level will be made.
Resumo:
This study is the first to investigate the effect of prolonged reading on reading performance and visual functions in students with low vision. The study focuses on one of the most common modes of achieving adequate magnification for reading by students with low vision, their close reading distance (proximal or relative distance magnification). Close reading distances impose high demands on near visual functions, such as accommodation and convergence. Previous research on accommodation in children with low vision shows that their accommodative responses are reduced compared to normal vision. In addition, there is an increased lag of accommodation for higher stimulus levels as may occur at close reading distance. Reduced accommodative responses in low vision and higher lag of accommodation at close reading distances together could impact on reading performance of students with low vision especially during prolonged reading tasks. The presence of convergence anomalies could further affect reading performance. Therefore, the aims of the present study were 1) To investigate the effect of prolonged reading on reading performance in students with low vision 2) To investigate the effect of prolonged reading on visual functions in students with low vision. This study was conducted as cross-sectional research on 42 students with low vision and a comparison group of 20 students with normal vision, aged 7 to 20 years. The students with low vision had vision impairments arising from a range of causes and represented a typical group of students with low vision, with no significant developmental delays, attending school in Brisbane, Australia. All participants underwent a battery of clinical tests before and after a prolonged reading task. An initial reading-specific history and pre-task measurements that included Bailey-Lovie distance and near visual acuities, Pelli-Robson contrast sensitivity, ocular deviations, sensory fusion, ocular motility, near point of accommodation (pull-away method), accuracy of accommodation (Monocular Estimation Method (MEM)) retinoscopy and Near Point of Convergence (NPC) (push-up method) were recorded for all participants. Reading performance measures were Maximum Oral Reading Rates (MORR), Near Text Visual Acuity (NTVA) and acuity reserves using Bailey-Lovie text charts. Symptoms of visual fatigue were assessed using the Convergence Insufficiency Symptom Survey (CISS) for all participants. Pre-task measurements of reading performance and accuracy of accommodation and NPC were compared with post-task measurements, to test for any effects of prolonged reading. The prolonged reading task involved reading a storybook silently for at least 30 minutes. The task was controlled for print size, contrast, difficulty level and content of the reading material. Silent Reading Rate (SRR) was recorded every 2 minutes during prolonged reading. Symptom scores and visual fatigue scores were also obtained for all participants. A visual fatigue analogue scale (VAS) was used to assess visual fatigue during the task, once at the beginning, once at the middle and once at the end of the task. In addition to the subjective assessments of visual fatigue, tonic accommodation was monitored using a photorefractor (PlusoptiX CR03™) every 6 minutes during the task, as an objective assessment of visual fatigue. Reading measures were done at the habitual reading distance of students with low vision and at 25 cms for students with normal vision. The initial history showed that the students with low vision read for significantly shorter periods at home compared to the students with normal vision. The working distances of participants with low vision ranged from 3-25 cms and half of them were not using any optical devices for magnification. Nearly half of the participants with low vision were able to resolve 8-point print (1M) at 25 cms. Half of the participants in the low vision group had ocular deviations and suppression at near. Reading rates were significantly reduced in students with low vision compared to those of students with normal vision. In addition, there were a significantly larger number of participants in the low vision group who could not sustain the 30-minute task compared to the normal vision group. However, there were no significant changes in reading rates during or following prolonged reading in either the low vision or normal vision groups. Individual changes in reading rates were independent of their baseline reading rates, indicating that the changes in reading rates during prolonged reading cannot be predicted from a typical clinical assessment of reading using brief reading tasks. Contrary to previous reports the silent reading rates of the students with low vision were significantly lower than their oral reading rates, although oral and silent reading was assessed using different methods. Although the visual acuity, contrast sensitivity, near point of convergence and accuracy of accommodation were significantly poorer for the low vision group compared to those of the normal vision group, there were no significant changes in any of these visual functions following prolonged reading in either group. Interestingly, a few students with low vision (n =10) were found to be reading at a distance closer than their near point of accommodation. This suggests a decreased sensitivity to blur. Further evaluation revealed that the equivalent intrinsic refractive errors (an estimate of the spherical dioptirc defocus which would be expected to yield a patient’s visual acuity in normal subjects) were significantly larger for the low vision group compared to those of the normal vision group. As expected, accommodative responses were significantly reduced for the low vision group compared to the expected norms, which is consistent with their close reading distances, reduced visual acuity and contrast sensitivity. For those in the low vision group who had an accommodative error exceeding their equivalent intrinsic refractive errors, a significant decrease in MORR was found following prolonged reading. The silent reading rates however were not significantly affected by accommodative errors in the present study. Suppression also had a significant impact on the changes in reading rates during prolonged reading. The participants who did not have suppression at near showed significant decreases in silent reading rates during and following prolonged reading. This impact of binocular vision at near on prolonged reading was possibly due to the high demands on convergence. The significant predictors of MORR in the low vision group were age, NTVA, reading interest and reading comprehension, accounting for 61.7% of the variances in MORR. SRR was not significantly influenced by any factors, except for the duration of the reading task sustained; participants with higher reading rates were able to sustain a longer reading duration. In students with normal vision, age was the only predictor of MORR. Participants with low vision also reported significantly greater visual fatigue compared to the normal vision group. Measures of tonic accommodation however were little influenced by visual fatigue in the present study. Visual fatigue analogue scores were found to be significantly associated with reading rates in students with low vision and normal vision. However, the patterns of association between visual fatigue and reading rates were different for SRR and MORR. The participants with low vision with higher symptom scores had lower SRRs and participants with higher visual fatigue had lower MORRs. As hypothesized, visual functions such as accuracy of accommodation and convergence did have an impact on prolonged reading in students with low vision, for students whose accommodative errors were greater than their equivalent intrinsic refractive errors, and for those who did not suppress one eye. Those students with low vision who have accommodative errors higher than their equivalent intrinsic refractive errors might significantly benefit from reading glasses. Similarly, considering prisms or occlusion for those without suppression might reduce the convergence demands in these students while using their close reading distances. The impact of these prescriptions on reading rates, reading interest and visual fatigue is an area of promising future research. Most importantly, it is evident from the present study that a combination of factors such as accommodative errors, near point of convergence and suppression should be considered when prescribing reading devices for students with low vision. Considering these factors would also assist rehabilitation specialists in identifying those students who are likely to experience difficulty in prolonged reading, which is otherwise not reflected during typical clinical reading assessments.
Resumo:
Understanding the complexities that are involved in the genetics of multifactorial diseases is still a monumental task. In addition to environmental factors that can influence the risk of disease, there is also a number of other complicating factors. Genetic variants associated with age of disease onset may be different from those variants associated with overall risk of disease, and variants may be located in positions that are not consistent with the traditional protein coding genetic paradigm. Latent Variable Models are well suited for the analysis of genetic data. A latent variable is one that we do not directly observe, but which is believed to exist or is included for computational or analytic convenience in a model. This thesis presents a mixture of methodological developments utilising latent variables, and results from case studies in genetic epidemiology and comparative genomics. Epidemiological studies have identified a number of environmental risk factors for appendicitis, but the disease aetiology of this oft thought useless vestige remains largely a mystery. The effects of smoking on other gastrointestinal disorders are well documented, and in light of this, the thesis investigates the association between smoking and appendicitis through the use of latent variables. By utilising data from a large Australian twin study questionnaire as both cohort and case-control, evidence is found for the association between tobacco smoking and appendicitis. Twin and family studies have also found evidence for the role of heredity in the risk of appendicitis. Results from previous studies are extended here to estimate the heritability of age-at-onset and account for the eect of smoking. This thesis presents a novel approach for performing a genome-wide variance components linkage analysis on transformed residuals from a Cox regression. This method finds evidence for a dierent subset of genes responsible for variation in age at onset than those associated with overall risk of appendicitis. Motivated by increasing evidence of functional activity in regions of the genome once thought of as evolutionary graveyards, this thesis develops a generalisation to the Bayesian multiple changepoint model on aligned DNA sequences for more than two species. This sensitive technique is applied to evaluating the distributions of evolutionary rates, with the finding that they are much more complex than previously apparent. We show strong evidence for at least 9 well-resolved evolutionary rate classes in an alignment of four Drosophila species and at least 7 classes in an alignment of four mammals, including human. A pattern of enrichment and depletion of genic regions in the profiled segments suggests they are functionally significant, and most likely consist of various functional classes. Furthermore, a method of incorporating alignment characteristics representative of function such as GC content and type of mutation into the segmentation model is developed within this thesis. Evidence of fine-structured segmental variation is presented.
Resumo:
Ecological problems are typically multi faceted and need to be addressed from a scientific and a management perspective. There is a wealth of modelling and simulation software available, each designed to address a particular aspect of the issue of concern. Choosing the appropriate tool, making sense of the disparate outputs, and taking decisions when little or no empirical data is available, are everyday challenges facing the ecologist and environmental manager. Bayesian Networks provide a statistical modelling framework that enables analysis and integration of information in its own right as well as integration of a variety of models addressing different aspects of a common overall problem. There has been increased interest in the use of BNs to model environmental systems and issues of concern. However, the development of more sophisticated BNs, utilising dynamic and object oriented (OO) features, is still at the frontier of ecological research. Such features are particularly appealing in an ecological context, since the underlying facts are often spatial and temporal in nature. This thesis focuses on an integrated BN approach which facilitates OO modelling. Our research devises a new heuristic method, the Iterative Bayesian Network Development Cycle (IBNDC), for the development of BN models within a multi-field and multi-expert context. Expert elicitation is a popular method used to quantify BNs when data is sparse, but expert knowledge is abundant. The resulting BNs need to be substantiated and validated taking this uncertainty into account. Our research demonstrates the application of the IBNDC approach to support these aspects of BN modelling. The complex nature of environmental issues makes them ideal case studies for the proposed integrated approach to modelling. Moreover, they lend themselves to a series of integrated sub-networks describing different scientific components, combining scientific and management perspectives, or pooling similar contributions developed in different locations by different research groups. In southern Africa the two largest free-ranging cheetah (Acinonyx jubatus) populations are in Namibia and Botswana, where the majority of cheetahs are located outside protected areas. Consequently, cheetah conservation in these two countries is focussed primarily on the free-ranging populations as well as the mitigation of conflict between humans and cheetahs. In contrast, in neighbouring South Africa, the majority of cheetahs are found in fenced reserves. Nonetheless, conflict between humans and cheetahs remains an issue here. Conservation effort in South Africa is also focussed on managing the geographically isolated cheetah populations as one large meta-population. Relocation is one option among a suite of tools used to resolve human-cheetah conflict in southern Africa. Successfully relocating captured problem cheetahs, and maintaining a viable free-ranging cheetah population, are two environmental issues in cheetah conservation forming the first case study in this thesis. The second case study involves the initiation of blooms of Lyngbya majuscula, a blue-green algae, in Deception Bay, Australia. L. majuscula is a toxic algal bloom which has severe health, ecological and economic impacts on the community located in the vicinity of this algal bloom. Deception Bay is an important tourist destination with its proximity to Brisbane, Australia’s third largest city. Lyngbya is one of several algae considered to be a Harmful Algal Bloom (HAB). This group of algae includes other widespread blooms such as red tides. The occurrence of Lyngbya blooms is not a local phenomenon, but blooms of this toxic weed occur in coastal waters worldwide. With the increase in frequency and extent of these HAB blooms, it is important to gain a better understanding of the underlying factors contributing to the initiation and sustenance of these blooms. This knowledge will contribute to better management practices and the identification of those management actions which could prevent or diminish the severity of these blooms.
Resumo:
Purpose: Poor image quality in the peripheral field may lead to myopia. Most studies measuring the higher order aberrations in the periphery have been restricted to the horizontal visual field. The purpose of this study was to measure higher order monochromatic aberrations across the central 42º horizontal x 32º vertical visual fields in myopes and emmetropes. ---------- Methods: We recruited 5 young emmetropes with spherical equivalent refractions +0.17 ± 0.45D and 5 young myopes with spherical equivalent refractions -3.9 ± 2.09D. Measurements were taken with a modified COAS-HD Hartmann-Shack aberrometer (Wavefront Sciences Inc). Measurements were taken while the subjects looked at 38 points arranged in a 7 x 6 matrix (excluding four corner points) through a beam splitter held between the instrument and the eye. A combination of the instrument’s software and our own software was used to estimate OSA Zernike coefficients for 5mm pupil diameter at 555nm for each point. The software took into account the elliptical shape of the off-axis pupil. Nasal and superior fields were taken to have positive x and y signs, respectively. ---------- Results: The total higher order RMS (HORMS) was similar on-axis for emmetropes (0.16 ± 0.02 μm) and myopes (0.17 ± 0.02 μm). There was no common pattern for HORMS for emmetropes across the visual field where as 4 out of 5 myopes showed a linear increase in HORMS in all directions away from the minimum. For all subjects, vertical and horizontal comas showed linear changes across the visual field. The mean rate of change of vertical coma across the vertical meridian was significantly lower (p = 0.008) for emmetropes (-0.005 ± 0.002 μm/deg) than for myopes (-0.013 ± 0.004 μm/deg). The mean rate of change of horizontal coma across the horizontal meridian was lower (p = 0.07) for emmetropes (-0.006 ± 0.003 μm/deg) than myopes (-0.011 ± 0.004 μm/deg). ---------- Conclusion: We have found differences in patterns of higher order aberrations across the visual fields of emmetropes and myopes, with myopes showing the greater rates of change of horizontal and vertical coma.
Resumo:
A point interpolation method with locally smoothed strain field (PIM-LS2) is developed for mechanics problems using a triangular background mesh. In the PIM-LS2, the strain within each sub-cell of a nodal domain is assumed to be the average strain over the adjacent sub-cells of the neighboring element sharing the same field node. We prove theoretically that the energy norm of the smoothed strain field in PIM-LS2 is equivalent to that of the compatible strain field, and then prove that the solution of the PIM- LS2 converges to the exact solution of the original strong form. Furthermore, the softening effects of PIM-LS2 to system and the effects of the number of sub-cells that participated in the smoothing operation on the convergence of PIM-LS2 are investigated. Intensive numerical studies verify the convergence, softening effects and bound properties of the PIM-LS2, and show that the very ‘‘tight’’ lower and upper bound solutions can be obtained using PIM-LS2.