944 resultados para Basic transfers income programs
Resumo:
The evolution of organisms that cause healthcare acquired infections (HAI) puts extra stress on hospitals already struggling with rising costs and demands for greater productivity and cost containment. Infection control can save scarce resources, lives, and possibly a facility’s reputation, but statistics and epidemiology are not always sufficient to make the case for the added expense. Economics and Preventing Healthcare Acquired Infection presents a rigorous analytic framework for dealing with this increasingly serious problem. ----- Engagingly written for the economics non-specialist, and brimming with tables, charts, and case examples, the book lays out the concepts of economic analysis in clear, real-world terms so that infection control professionals or infection preventionists will gain competence in developing analyses of their own, and be confident in the arguments they present to decision-makers. The authors: ----- Ground the reader in the basic principles and language of economics. ----- Explain the role of health economists in general and in terms of infection prevention and control. ----- Introduce the concept of economic appraisal, showing how to frame the problem, evaluate and use data, and account for uncertainty. ----- Review methods of estimating and interpreting the costs and health benefits of HAI control programs and prevention methods. ----- Walk the reader through a published economic appraisal of an infection reduction program. ----- Identify current and emerging applications of economics in infection control. ---- Economics and Preventing Healthcare Acquired Infection is a unique resource for practitioners and researchers in infection prevention, control and healthcare economics. It offers valuable alternate perspective for professionals in health services research, healthcare epidemiology, healthcare management, and hospital administration. ----- Written for: Professionals and researchers in infection control, health services research, hospital epidemiology, healthcare economics, healthcare management, hospital administration; Association of Professionals in Infection Control (APIC), Society for Healthcare Epidemiologists of America (SHEA)
Resumo:
The arrival of substantial cohorts of English language learners from Africa with little, no or severely interrupted schooling is requiring new pedagogic responses from teachers in Australia and other Western countries of refugee re-settlement. If the students are to have optimal educational and life chances, it is crucial for them to acquire resources for conceptually deep and critical literacy tasks while still learning basic reading and writing skills. This requires teachers to extend their pedagogic repertoires: subject area teachers must teach language and literacy alongside content; high school teachers must teach what has been thought of as primary school curriculum. The aim of this article is to describe some teacher responses to these challenges. Data are drawn from a study involving an intensive language school and three high schools, and also from the author’s experience as a homework tutor for refugees. Stand-alone basic skills programs are described, as are modifications of long-established ESL programs. It is also argued that teachers need to find ways of linking with the conceptual knowledge of students who arrive with content area backgrounds different from others in their class. Everyday life experiences prior to, and after re-settlement in the West, are rich with potential in this regard.
Resumo:
To understand the diffusion of high technology products such as PCs, digital cameras and DVD players it is necessary to consider the dynamics of successive generations of technology. From the consumer’s perspective, these technology changes may manifest themselves as either a new generation product substituting for the old (for instance digital cameras) or as multiple generations of a single product (for example PCs). To date, research has been confined to aggregate level sales models. These models consider the demand relationship between one generation of a product and a successor generation. However, they do not give insights into the disaggregate-level decisions by individual households – whether to adopt the newer generation, and if so, when. This paper makes two contributions. It is the first large scale empirical study to collect household data for successive generations of technologies in an effort to understand the drivers of adoption. Second, in contrast to traditional analysis in diffusion research that conceptualizes technology substitution as an “adoption of innovation” type process, we propose that from a consumer’s perspective, technology substitution combines elements of both adoption (adopting the new generation technology) and replacement (replacing generation I product with generation II). Key Propositions In some cases, successive generations are clear “substitutes” for the earlier generation (e.g. PCs Pentium I to II to III ). More commonly the new generation II technology is a “partial substitute” for existing generation I technology (e.g. DVD players and VCRs). Some consumers will purchase generation II products as substitutes for their generation I product, while other consumers will purchase generation II products as additional products to be used as well as their generation I product. We propose that substitute generation II purchases combine elements of both adoption and replacement, but additional generation II purchases are solely adoption-driven process. Moreover, drawing on adoption theory consumer innovativeness is the most important consumer characteristic for adoption timing of new products. Hence, we hypothesize consumer innovativeness to influence the timing of both additional and substitute generation II purchases but to have a stronger impact on additional generation II purchases. We further propose that substitute generation II purchases act partially as a replacement purchase for the generation I product. Thus, we hypothesize that households with older generation I products will make substitute generation II purchases earlier. Methods We employ Cox hazard modeling to study factors influencing the timing of a household’s adoption of generation II products. A separate hazard model is conducted for additional and substitute purchases. The age of the generation I product is calculated based on the most recent household purchase of that product. Control variables include size and income of household, age and education of decision-maker. Results and Implications Our preliminary results confirm both our hypotheses. Consumer innovativeness has a strong influence on both additional purchases and substitute purchases. Also consistent with our hypotheses, the age of the generation I product has a dramatic influence for substitute purchases of VCR/DVD players and a strong influence for PCs/notebooks. Yet, also as hypothesized, there was no influence on additional purchases. This implies that there is a clear distinction between additional and substitute purchases of generation II products, each with different drivers. For substitute purchases, product age is a key driver. Therefore marketers of high technology products can utilize data on generation I product age (e.g. from warranty or loyalty programs) to target customers who are more likely to make a purchase.
Resumo:
Economists rely heavily on self-reported measures to examine the relationship between income and health. We directly compare survey responses of a self-reported measure of health that is commonly used in nationally representative surveys with objective measures of the same health condition. We focus on hypertension. We find no evidence of an income/health greadient using self-reported hypertension but a sizeable gradient when using objectively measured hypertension. We also find that the probability of a false negative reporting is significantly income graded. Our results suggest that using commonly available self-reported chronic health measures might underestimate true income-related inequalities in health.
Resumo:
Suicide has drawn much attention from both the scientific community and the public. Examining the impact of socio-environmental factors on suicide is essential in developing suicide prevention strategies and interventions, because it will provide health authorities with important information for their decision-making. However, previous studies did not examine the impact of socio-environmental factors on suicide using a spatial analysis approach. The purpose of this study was to identify the patterns of suicide and to examine how socio-environmental factors impact on suicide over time and space at the Local Governmental Area (LGA) level in Queensland. The suicide data between 1999 and 2003 were collected from the Australian Bureau of Statistics (ABS). Socio-environmental variables at the LGA level included climate (rainfall, maximum and minimum temperature), Socioeconomic Indexes for Areas (SEIFA) and demographic variables (proportion of Indigenous population, unemployment rate, proportion of population with low income and low education level). Climate data were obtained from Australian Bureau of Meteorology. SEIFA and demographic variables were acquired from ABS. A series of statistical and geographical information system (GIS) approaches were applied in the analysis. This study included two stages. The first stage used average annual data to view the spatial pattern of suicide and to examine the association between socio-environmental factors and suicide over space. The second stage examined the spatiotemporal pattern of suicide and assessed the socio-environmental determinants of suicide, using more detailed seasonal data. In this research, 2,445 suicide cases were included, with 1,957 males (80.0%) and 488 females (20.0%). In the first stage, we examined the spatial pattern and the determinants of suicide using 5-year aggregated data. Spearman correlations were used to assess associations between variables. Then a Poisson regression model was applied in the multivariable analysis, as the occurrence of suicide is a small probability event and this model fitted the data quite well. Suicide mortality varied across LGAs and was associated with a range of socio-environmental factors. The multivariable analysis showed that maximum temperature was significantly and positively associated with male suicide (relative risk [RR] = 1.03, 95% CI: 1.00 to 1.07). Higher proportion of Indigenous population was accompanied with more suicide in male population (male: RR = 1.02, 95% CI: 1.01 to 1.03). There was a positive association between unemployment rate and suicide in both genders (male: RR = 1.04, 95% CI: 1.02 to 1.06; female: RR = 1.07, 95% CI: 1.00 to 1.16). No significant association was observed for rainfall, minimum temperature, SEIFA, proportion of population with low individual income and low educational attainment. In the second stage of this study, we undertook a preliminary spatiotemporal analysis of suicide using seasonal data. Firstly, we assessed the interrelations between variables. Secondly, a generalised estimating equations (GEE) model was used to examine the socio-environmental impact on suicide over time and space, as this model is well suited to analyze repeated longitudinal data (e.g., seasonal suicide mortality in a certain LGA) and it fitted the data better than other models (e.g., Poisson model). The suicide pattern varied with season and LGA. The north of Queensland had the highest suicide mortality rate in all the seasons, while there was no suicide case occurred in the southwest. Northwest had consistently higher suicide mortality in spring, autumn and winter. In other areas, suicide mortality varied between seasons. This analysis showed that maximum temperature was positively associated with suicide among male population (RR = 1.24, 95% CI: 1.04 to 1.47) and total population (RR = 1.15, 95% CI: 1.00 to 1.32). Higher proportion of Indigenous population was accompanied with more suicide among total population (RR = 1.16, 95% CI: 1.13 to 1.19) and by gender (male: RR = 1.07, 95% CI: 1.01 to 1.13; female: RR = 1.23, 95% CI: 1.03 to 1.48). Unemployment rate was positively associated with total (RR = 1.40, 95% CI: 1.24 to 1.59) and female (RR=1.09, 95% CI: 1.01 to 1.18) suicide. There was also a positive association between proportion of population with low individual income and suicide in total (RR = 1.28, 95% CI: 1.10 to 1.48) and male (RR = 1.45, 95% CI: 1.23 to 1.72) population. Rainfall was only positively associated with suicide in total population (RR = 1.11, 95% CI: 1.04 to 1.19). There was no significant association for rainfall, minimum temperature, SEIFA, proportion of population with low educational attainment. The second stage is the extension of the first stage. Different spatial scales of dataset were used between the two stages (i.e., mean yearly data in the first stage, and seasonal data in the second stage), but the results are generally consistent with each other. Compared with other studies, this research explored the variety of the impact of a wide range of socio-environmental factors on suicide in different geographical units. Maximum temperature, proportion of Indigenous population, unemployment rate and proportion of population with low individual income were among the major determinants of suicide in Queensland. However, the influence from other factors (e.g. socio-culture background, alcohol and drug use) influencing suicide cannot be ignored. An in-depth understanding of these factors is vital in planning and implementing suicide prevention strategies. Five recommendations for future research are derived from this study: (1) It is vital to acquire detailed personal information on each suicide case and relevant information among the population in assessing the key socio-environmental determinants of suicide; (2) Bayesian model could be applied to compare mortality rates and their socio-environmental determinants across LGAs in future research; (3) In the LGAs with warm weather, high proportion of Indigenous population and/or unemployment rate, concerted efforts need to be made to control and prevent suicide and other mental health problems; (4) The current surveillance, forecasting and early warning system needs to be strengthened, to trace the climate and socioeconomic change over time and space and its impact on population health; (5) It is necessary to evaluate and improve the facilities of mental health care, psychological consultation, suicide prevention and control programs; especially in the areas with low socio-economic status, high unemployment rate, extreme weather events and natural disasters.
Resumo:
Abstract With the phenomenal growth of electronic data and information, there are many demands for the development of efficient and effective systems (tools) to perform the issue of data mining tasks on multidimensional databases. Association rules describe associations between items in the same transactions (intra) or in different transactions (inter). Association mining attempts to find interesting or useful association rules in databases: this is the crucial issue for the application of data mining in the real world. Association mining can be used in many application areas, such as the discovery of associations between customers’ locations and shopping behaviours in market basket analysis. Association mining includes two phases. The first phase, called pattern mining, is the discovery of frequent patterns. The second phase, called rule generation, is the discovery of interesting and useful association rules in the discovered patterns. The first phase, however, often takes a long time to find all frequent patterns; these also include much noise. The second phase is also a time consuming activity that can generate many redundant rules. To improve the quality of association mining in databases, this thesis provides an alternative technique, granule-based association mining, for knowledge discovery in databases, where a granule refers to a predicate that describes common features of a group of transactions. The new technique first transfers transaction databases into basic decision tables, then uses multi-tier structures to integrate pattern mining and rule generation in one phase for both intra and inter transaction association rule mining. To evaluate the proposed new technique, this research defines the concept of meaningless rules by considering the co-relations between data-dimensions for intratransaction-association rule mining. It also uses precision to evaluate the effectiveness of intertransaction association rules. The experimental results show that the proposed technique is promising.
Relative income, happiness, and utility : an explanation for the Easterlin paradox and other puzzles
Resumo:
The well-known Easterlin paradox points out that average happiness has remained constant over time despite sharp rises in GNP per head. At the same time, a micro literature has typically found positive correlations between individual income and individual measures of subjective well-being. This paper suggests that these two findings are consistent with the presence of relative income terms in the utility function. Income may be evaluated relative to others (social comparison) or to oneself in the past (habituation). We review the evidence on relative income from the subjective well-being literature. We also discuss the relation (or not) between happiness and utility, and discuss some nonhappiness research (behavioral, experimental, neurological) related to income comparisons. We last consider how relative income in the utility function can affect economic models of behavior in the domains of consumption, investment, economic growth, savings, taxation, labor supply, wages, and migration.
Resumo:
The purpose of this proof-of-concept study was to determine the relevance of direct measurements to monitor the load applied on the osseointegrated fixation of transfemoral amputees during static load bearing exercises. The objectives were (A) to introduce an apparatus using a three-dimensional load transducer, (B) to present a range of derived information relevant to clinicians, (C) to report on the outcomes of a pilot study and (D) to compare the measurements from the transducer with those from the current method using a weighing scale. One transfemoral amputee fitted with an osseointegrated implant was asked to apply 10 kg, 20 kg, 40 kg and 80 kg on the fixation, using self-monitoring with the weighing scale. The loading was directly measured with a portable kinetic system including a six-channel transducer, external interface circuitry and a laptop. As the load prescribed increased from 10 kg to 80 kg, the forces and moments applied on and around the antero-posterior axis increased by 4 fold anteriorly and 14 fold medially, respectively. The forces and moments applied on and around the medio-lateral axis increased by 9 fold laterally and 16 fold from anterior to posterior, respectively. The long axis of the fixation was overloaded and underloaded in 17 % and 83 % of the trials, respectively, by up to ±10 %. This proof-of-concept study presents an apparatus that can be used by clinicians facing the challenge of improving basic knowledge on osseointegration, for the design of equipment for load bearing exercises and for rehabilitation programs.
Resumo:
Problem-based learning (PBL) is a pedagogical methodology that presents the learner with a problem to be solved to stimulate and situate learning. This paper presents key characteristics of a problem-based learning environment that determines its suitability as a data source for workrelated research studies. To date, little has been written about the availability and validity of PBL environments as a data source and its suitability for work-related research. We describe problembased learning and use a research project case study to illustrate the challenges associated with industry work samples. We then describe the PBL course used in our research case study and use this example to illustrate the key attributes of problem-based learning environments and show how the chosen PBL environment met the work-related research requirements of the research case study. We propose that the more realistic the PBL work context and work group composition, the better the PBL environment as a data source for a work-related research. The work context is more realistic when relevant and complex project-based problems are tackled in industry-like work conditions over longer time frames. Work group composition is more realistic when participants with industry-level education and experience enact specialized roles in different disciplines within a professional community.
Resumo:
With the emergence of multi-cores into the mainstream, there is a growing need for systems to allow programmers and automated systems to reason about data dependencies and inherent parallelismin imperative object-oriented languages. In this paper we exploit the structure of object-oriented programs to abstract computational side-effects. We capture and validate these effects using a static type system. We use these as the basis of sufficient conditions for several different data and task parallelism patterns. We compliment our static type system with a lightweight runtime system to allow for parallelization in the presence of complex data flows. We have a functioning compiler and worked examples to demonstrate the practicality of our solution.
Resumo:
We investigate whether therewas a causal effect of income changes on the health satisfaction of East and West Germans in the years following reunification. Our data source is the German Socio-Economic Panel (GSOEP) between 1984 and 2002, and we fit a recently proposed fixed-effects ordinal estimator to our health measures and use a causal decomposition technique to account for panel attrition.We find evidence of a significant positive effect of income changes on health satisfaction, but the quantitative size of this effect is small. This is the case with respect to current income and a measure of ‘permanent’ income.