1000 resultados para Bacia Bauru
Resumo:
Baixo Vermelho area, situated on the northern portion of Umbuzeiro Graben (onshore Potiguar Basin), represents a typical example of a rift basin, characterized, in subsurface, by the sedimentary rift sequence, correlated to Pendência Formation (Valanginian-Barremian), and by the Carnaubais fault system. In this context, two main goals, the stratigraphic and the structural analysis, had guided the research. For this purpose, it was used the 3D seismic volume and eight wells located in the study area and adjacencies. The stratigraphic analysis of the Valanginian-Barremian interval was carried through in two distinct phases, 1D and 2D, in which the basic concepts of the sequence stratigraphy had been adapted. In these phases, the individual analysis of each well and the correlation between them, allowed to recognize the main lithofacies, to interpret the effective depositional systems and to identify the genetic units and key-surfaces of chronostratigraphic character. The analyzed lithofacies are represented predominantly by conglomerates, sandstones, siltites and shales, with carbonate rocks and marls occurring subordinately. According to these lithofacies associations, it is possible to interpret the following depositional systems: alluvial fan, fluvio-deltaic and lacustrine depositional systems. The alluvial fan system is mainly composed by conglomerates deposits, which had developed, preferentially in the south portion of the area, being directly associated to Carnaubais fault system. The fluvial-deltaic system, in turn, was mainly developed in the northwest portion of the area, at the flexural edge, being characterized by coarse sandstones with shales and siltites intercalated. On the other hand, the lacustrine system, the most dominant one in the study area, is formed mainly by shales that could occur intercalated with thin layers of fine to very fine sandstones, interpreted as turbidite deposits. The recognized sequence stratigraphy units in the wells are represented by parasequence sets, systems tracts and depositional sequences. The parasequence sets, which are progradational or retrogradational, had been grouped and related to the systems tracts. The predominance of the progradation parasequence sets (general trend with coarsening-upward) characterizes the Regressive Systems Tract, while the occurrence, more frequently, of the retrogradation parasequence sets (general trend with finning-upward) represents the Transgressive System Tract. In the seismic stratigraphic analysis, the lithofacies described in the wells had been related to chaotic, progradational and parallel/subparallel seismic facies, which are associated, frequently, to the alluvial fans, fluvial-deltaic and lacustrine depositional systems, respectively. In this analysis, it was possible to recognize fifteen seismic horizons that correspond to sequence boundaries and to maximum flooding surfaces, which separates Transgressive to Regressive systems tracts. The recognition of transgressive-regressive cycles allowed to identify nine, possibly, 3a order deposicional sequences, related to the tectonic-sedimentary cycles. The structural analysis, in turn, was done at Baixo Vermelho seismic volume, which shows, clearly, the structural complexity printed in the area, mainly related to Carnaubais fault system, acting as an important fault system of the rift edge. This fault system is characterized by a main arrangement of normal faults with trend NE-SO, where Carnaubais Fault represents the maximum expression of these lineations. Carnaubais Fault corresponds to a fault with typically listric geometry, with general trend N70°E, dipping to northwest. It is observed, throughout all the seismic volume, with variations in its surface, which had conditioned, in its evolutive stages, the formation of innumerable structural features that normally are identified in Pendencia Formation. In this unit, part of these features is related to the formation of longitudinal foldings (rollover structures and distentional folding associated), originated by the displacement of the main fault plan, propitiating variations in geometry and thickness of the adjacent layers, which had been deposited at the same time. Other structural features are related to the secondary faultings, which could be synthetic or antithetic to Carnaubais Fault. In a general way, these faults have limited lateral continuity, with listric planar format and, apparently, they play the role of the accomodation of the distentional deformation printed in the area. Thus, the interaction between the stratigraphic and structural analysis, based on an excellent quality of the used data, allowed to get one better agreement on the tectonicsedimentary evolution of the Valanginian-Barremian interval (Pendência Formation) in the studied area
Resumo:
The segment of Carnaubais Fault located in the southeasthern portion of Guamaré Graben (Potiguar Basin) was studied. Several structures were detected and some of them strongly suggest that the last movements in Carnaubais Fault are of Neotectonic age. The study comprises an integrated interpretation of geologic, geomorphologic and geophysical data (gravimetry, magnetometry, resistivity, and self potential methods). According to the size of the studied areas, two approaches were used in this research. The first approach is of a regional nature and was conducted in an area, hereafter named Regional Area, having approximately 6,000 km2 and localized in the northern portion of Rio Grande do Norte state, around Macau city. The second approach comprises detailled studies of two small areas inside the Regional Area: the Camurupim and São Bento areas. Gravimetric and topographic data were used in the Regional Area. A separation into regional and residual components were conducted both on gravimetric and topographic data. The interpretation of the residual component of the gravimetric data allows a precise mapping of the borders of the Guamaré Graben. The regional component features of the topographic data are controlled by the pair of conjugate faults composed by the Carnaubais Fault (NE direction) and the Afonso Bezerra Fault (NW direction). On the other hand, the residual component of the topographic data shows that river valleis of NW direction are sharply interrupted where they intersect Carnaubais Fault. This fact is interpreted as an evidency that the last significant moviments occured in the Carnaubais Fault. Geologic, geomorphologic and geophysical data (magnetometry, resistivity, and self potential methods) were used in the Camurupim Area. The geologic mapping allows to identify five lithophacies unities. The first two unities (from base to top) were interpreted as composing a marine (or transitional) depositional sequency while the other were interpreted is composing a continental depositional sequence. The two sequences are clearly separated of an erosional discordance. The unities grouped in the marine sequence are composed by calcarenites (Unity A) and mudstones (Unity B). Unity A was deposited in a shalow plataform while Unity B, in a tidal flat. The unities grouped in the continental sequence are composed of conglomerate (Unity C) and sandstones (Unities D and E). Unities C and D are fluvial deposits while unity E is an eolian deposit. Unities A and B can be stratigraphycally correlated with Guamaré Formation. Unities C and D present three possible correlations. They may be correlated with Tibau Formation; or with Barreiras Formation; or with a clastic sediment deposit, commonly found in some rivers of Rio Grande do Norte state, and statigraphycally positioned above Barreiras Formation. Based on the decrease of the grain sizes from base to top both on unities C and D, it is proposed that these unities are correlated with the clastic sediment above mentioned. In this case, these unities would have, at least, Pleistocenic age. Finally, it is proposed that Unity E represent an eolian deposit that sufferred recent changes (at least in the Quaternary). The integrated interpretation of hydrographic, morphologic and geophysical data from Camurupim Area shows that Carnaubais Fault is locally composed by a system of several paralel subvertical faults. The fault presenting the larger vertical slip controls the valley of Camurupim river and separates the area in two blocks; in the nothern block the top of the Jandaira limestone is deeper than in the southern block. In addition, at least one of the faults in the northern block is cutting the whole sedimentary section. Because unities C , D, and/or E may be of Quaternary age, tectonic moviments possibly occured in Carnaubais Fault during this period. Detailled geologic mapping were conducted in beachrocks found in São Bento Area. This area is located at the intersection of the coast line with the Carnaubais Fault. The detected structures in the beachrocks are very similar to those caused by fragile deformations. The structures mapped in the beachrocks are consistent with a stress field with maximun compressional stress in E-W direction and extensional stress in the N-S direction. Since the Carnaubais Fault has a NE direction, it is optimally positioned to suffer tectonic movements under the action of such stress field. In addition, the shape of the coastal line appear to be controlled by the Carnaubais Fault. Furthemore, the observed structures in Camurupim Área are consistent with this stress field. These facts are interpreted as evidences that Carnaubais Fault and beachrocks suffered coupled tectonic movements. These moviments are of Neotectonic age because the beachrocks present ages less than 16,000 years
Resumo:
This study has as a main objective to make a detailed stratigraphic analysis of the Aptian-Albian interval in the east part of Araripe Basin, NE of Brazil which correspond, litostratigraphically, to Rio Da Batateira, Crato, Ipubi and Romualdo formations. The stratigraphic analysis was based on three different stages, the 1D, 2D and 3D analysis; these ones were adapted to the sequence stratigraphy concepts in order to create a chronostratigraphic framework for the study area within the basin. The database used in the present study contains field and well information, wells that belong to Santana Project, carried out by the Ministério de Minas e Energia- DNPM- CPRM from 1977 to 1978. The analysis 1D, which was done separately for each well and outcrop allowed the recognition of 13 sedimentary facies, mainly divided based on predominant litologies and sedimentary structures. Such facies are lithologically represented by pebble, sandstones, claystones, margas and evaporates; these facies are associated in order to characterize different depositional systems, that integrate from the continental environment (fluvial system and lacustre), paralic system (delta system and lagunar) to the marine environment (shelfenvironment). The first one, the fluvial system was divided into two subtypes: meandering fluvial system, characterized by fill channel and floodplain deposits; the facies of this system are associated vertically according to the textural thinning upward cycles (dirting-up trend pattern in well logs). Lacustrine environment is mainly related with the lithotypes of the Crato Formation, it shows a good distribution within the basin, been composed by green claystone deposits and calcareous laminated. Deltaic System represented by prodelta and delta front deposits which coarsening upward tendency. Lagunar system is characterised by the presence of anhydrite and gypsum deposits besides the black claystone deposits with vegetal fragments which do not contain a fauna typically marine. The marine platform system is composed by successions of black and gray claystone with fossiliferous fauna of Dinoflagellates (Spiniferites Mantell, Subtilisphaera Jain e Subtilisphaera Millipied genre) typical of this kind of depositional system. The sedimentary facies described are vertically arranged in cycles with progradational patterns which form textural coersening upward cycles and retrogradational, represented by textural thinning dowward cycles. Based in these cycles, in their stack pattern and the vertical change between these patterns, the systems tracks and the depositional sequences were recognized. The Low System Track (LST) and High System Track (HST) are composed by cycles with progradational stack pattern, whereas the Trangessive System Track (TST) is composed by retrogradational stack pattern cycles. The 2D stratigraphic analysis was done through the carrying out of two stratigraphic sections. For the selection of the datum the deepest maximum flooding surface was chosen, inside the Sequence 1, the execution of these sections allowed to understand the behaviour of six depositional systems along the study area, which were interpreted as cycles of second order or supercycles (cycles between 3 and 10 Ma), according to the Vail, et al (1977) classification. The Sequence 1, the oldest of the six identified is composed by the low, transgressive and high systems tracks. The first two system tracks are formed exclusively by fluvial deposits of the Rio da Batateira Formation whereas the third one includes deltaic and lacustrine deposits of the Crato Formation. The sequences 2 and 3 are formed by the transgressive systems tracks (lake spreading phase) and the highstand system track (lake backward phase). The TST of these sequences are formed by lacustrine deposits whereas HST contains deltaic deposits, indicating high rates of sedimentary supply at the time of it s deposition. The sequence 4 is composed by LST, TST and HST, The TST4 shows a significant fall of the lake base level, this track was developed in conditions of low relation between the creation rate of space of accommodation and the sedimentary influx. The TST4 marks the third phase of expansion of the lacustrine system in the section after the basin´s rift, the lacustrine system established in the previous track starts a backward phase in conditions that the sedimentary supply rate exceeds the creation rate of space accommodation. The sequence 5 was developed in two different phases, the first one is related with the latest expansion stage of the lake, (TST5), the basal track of this sequence. In this phase the base level of the lake rose considerably. The second phase (related to the TST5) indicates the end of the lacustrine domain in the Araripe Basin and the change to lagunar system ant tidal flat, with great portions in the supratidal. These systems were formed by restricted lagoons, with shallow level of water and with intermittent connections with the sea. This, was the phase when the Araripe Basin recorded the most several arid conditions of the whole interval studied, Aptian Albian, conditions that allow the formation of evaporitic deposits. The sequence 6 began its deposition after a significant fall of the sea (LST6). The sequence 6 is without any doubtlessly, the sequence that has deposits that prove the effective entrance of the sea into the Araripe Basin. The TST6, end of this sequence, represents the moment which the sea reaches its maximum level during the Aptian Albian time. The stratigraphic analysis of the Aptian Albian interval made possible the understanding that the main control in the development of the depositional sequences recognized in the Araripe Basin were the variations of the local base level, which are controlled itself by the climate changes
Resumo:
Through an integrated approach, using litho, chrono and biostratigraphic data, the relative importance of climate variations and tectonics were recognized in rift sediments of the onshore Potiguar Basin, Northeast Brazil. Concepts of sequence stratigraphy were applied as a template to integrate sedimentological and geochemical data (oxygen isotopes), as well as quantitative palynologic methods to address and recognize the main depositional patterns produced in a rift basin. The main objective was to address the relative importance of climate changes and tectonics to the resultant stratigraphic architecture. The results of computer simulations of sedimentary basin fills of rift basins were quite useful to test working hypothesis and mimic the process of filling a half graben during a rift event. The studied section includes a neovalanginian-eobarremian (Lower Cretaceous) rift interval from the Pendência Formation, located in the southwestern portion of Umbuzeiro Graben, in the offshore Potiguar Basin. The depositional setting is interpreted as progradational deltaic system entering a lake from its flexural margin. Sismoestratigraphyc and well logs analyses allowed to interpret two regressive intervals (Green and Yellow Sequences), separated by a broad transgressive interval (Orange Sequence), known as the Livramento Shale. The depositional history encompass three stages: two tectonically active phases, during the deposition of the Green and Yellow Sequences, and a tectonically quiescent phase, during the deposition of the Orange Sequence. Paleoclimatic interpretation, based on quantitative palynology and geochemical data (18O), suggests a tendency to arid conditions during the tectonically active phases and wet conditions during the tectonically quiescent phase. Stratigraphic modeling and backstripping techniques, supported by paleoclimatic/paleoecologic interpretations provide a powerful methodology to evaluate the tectonic and climatic controls on tectonic lakes
Resumo:
This study focuses on the potential of several techniques used to identify depositional geometries and paleogeographical investigation on the SW border of the Potiguar Basin. Three areas were selected for an integrated geological, geophysical and geochemistry study. The main used techniques were facies analysis, remote sensing,ground penetrating radar (GPR) and gamma-ray in outcrops, as well as petrographic microscope observations and the using of scanning eletronic microscopic (SEM), and Carbon and Oxygen Isotopic study in the carbonate tufa. These methodological approaches were very efficient in the facies analysis of 2D geometries. The GPR profiles carried out in Quixeré identified important geological reflectors which allowed to the identification of depositional geometries of tufa. However, GPR profiles were not able to identify geological reflectors in the Apodi and Olho d´Água da Bica outcrops. Gammaray profiles also presented good results, which justify their use in 1D and 2D geometric analysis. Carbon and Oxygen Isotopic analyses were also used to investigate paleoenvironmental setting of tufa deposits. It is important to remark the excellent resultsof GRP using in the identification of deposition al geometries of tufa and their contact relationships with the underlying rocks. Field analysis of faults indicate a vertical sigma-1 orientation which was associated to normal faults
Resumo:
In the current work are presented the results about the study of digital mapping of analogs referents the fluvial oil reservoirs in the Açu Formation. With the regional recognizing in the south corner of Potiguar Basin was selected a area of 150 Km square in the west of Assu city. In this area was chosen the outcrops for the digital mapping and from the data fields and remote sensors were done the depositional architectural for the fluvial deposits, which it was named coarse meandering fluvial systems. In the deposits were individualized 3 (three) fluvial cycles, which they was separated by bounding surface of fifth order. Such cycles are preferentially sandy, with fining-upward sequence finished in flood plain deposits. Inner of the sandy levels of the filling channels were characterized least cycles, normaly incomplete, constituted by braided sandy bodies and bounding surfaces of fourth order. In the mapped area was chosen a outcrop with great exposition, where it was possible to see tipical deposits of filling channel and was in this outcrop that was done the digital mapping. In this outcrop was used diverse technics and tools, which they integrated sedimentological, altimetric (GPS, Total Station), LIDAR (Light Detection and Ranging), digital photomosaic of high resolution and of the inner geometries (Ground Penetration Radar) data sets. For the integrating, interpretation and visualization of data was used software GoCAD®. The final product of the outcrop digital mapping was the photorealistic model of part of the cliff (or slope) because the observed reflectors in the radargrams were absents. A part of bar oblique accretion was modeled according to GPR gride of 200x200 meters in the alluvial Assu river probable recent analog. With the data of inner geometries was developed the three-dimentional sedimentary architectural, where it was possible characterize sand sheet deposits and many hierarchy of braided channels. At last, simulations of sedimentary geometries and architectures of the Potiguar Basin Fluvial Reservoirs were done with PetBool software, in order to understand the capacity of this program in simulations with a lot of numbers of conditioning wells. In total, 45 simulations was acquired, where the time and the channel numbers increase in relation of the conditioning wells quantity. The deformation of the meanders was detected from the change of simulated dominion dimensions. The presence of this problem was because the relationship between the simulated dominion and the width of the meander
Resumo:
A research project is being developed by PPGG/UFRN and PETROBRAS in the Xaréu Oil Field located in Ceará Basin, Northeastern Brazil. The objective of the research is to characterize a fractured carbonate reservoir, the Trairi Limestone, in order to drill a borehole with two horizontal legs taking advantage of the natural fracture system to enhance the oil recovery. The present master thesis is part of this research and its contribution is to estimate fault orientation from unoriented cores, using the method proposed by Hesthammer & Henden (2000). In order to orient a fault cutting a bed observed in the core, the bed should be previously oriented. As additional constraint to orient the bed, we use regional bedding orientation obtained from structure maps of Trairi Limestone. Because the number of cores drilled from the Trairi Limestone was too small, we analyzed all cores from the field. As geologic constraint, we admit that all faults were formed as result of the South America and Africa separation, in the context of a regional dextral strike-slip fault formation. In this context, secondary faults are manly T and R faults according Riedel s classification. We analyzed 236.5 m of cores. The dip of bedding varies from 0o to 8o, being the most frequent value equal to 2o. We interpret this result as evidence that the deformation process was manly ruptil. 77 faults were identified in the cores. These faults strike manly to NW and NE with dips, in general, inside the interval 700 - 900. We suggest that the horizontal legs of the borehole should be oriented to NW and NE in order to improve the probability of intercepting open fractures and faults
Resumo:
In spite of significant study and exploration of Potiguar Basin, easternmost Brazilian equatorial margin, by the oil industry, its still provides an interesting discussion about its origin and the mechanisms of hydrocarbon trapping. The mapping and interpretation of 3D seismic reflection data of Baixa Grande Fault, SW portion of Umbuzeiro Graben, points as responsible for basin architecture configuration an extensional deformational process. The fault geometry is the most important deformation boundary condition of the rift stata. The development of flat-ramp geometries is responsible for the formation of important extensional anticline folds, many of then hydrocarbon traps in this basin segment. The dominant extensional deformation in the studied area, marked by the development of normal faults developments, associated with structures indicative of obliquity suggests variations on the former regime of Potiguar Basin through a multiphase process. The changes in structural trend permits the generation of local transpression and transtension zones, which results in a complex deformation pattern displayed by the Potiguar basin sin-rift strata. Sismostratigraphic and log analysis show that the Baixa Grande Fault acts as listric growing fault at the sedimentation onset. The generation of a relay ramp between Baixa Grande Fault and Carnaubais Fault was probably responsible for the balance between subsidence and sedimentary influx taxes, inhibiting its growing behaviour. The sismosequences analysis s indicates that the extensional folds generation its diachronic, and then the folds can be both syn- and post-depositional
Resumo:
A complex depositional history, related to Atlantic rifting, demonstrates the geological evolution during the late Jurassic and early Neocomian periods in the Araripe Basin NE Brazil. Based on outcrop, seismic and remote sensing data, a new model of the tectono-stratigraphic evolution of the section that covers the stages Dom João, Rio da Serra and Aratu (Brejo Santo, Missão Velha and Abaiara formations) is presented in this paper. In the stratigraphic section studied, ten sedimentary facies genetically linked to nine architectural elements were described, representing depositional systems associated with fluvial, aeolian and deltaic environments. Based on the relationship between the rates of creation of accommodation space and sediment influx (A / S) it was possible to associate these depositional systems with High and Low accommodation system tracks. These system tracks represent two tectono-sequences, separated by regional unconformities. The Tectono-sequence I, which includes lithotypes from the Brejo Santo Formation and is related to the pre-rift stage, is bounded at the base by the Paleozoic unconformity. This unit represents only a High Accommodation System Track, composed by a succession of pelitic levels interbedded with sandstones and limestones, from a large fluvial floodplain origin, developed under arid climatic conditions. The Tectono-sequence II, separated from the underlying unit by an erosional unconformity, is related to the rift stage, and is composed by the Missão Velha and Abaiara Formation lithotypes. Changes in depositional style that reflect variations in the A / S ratio, and the presence of hydroplastic deformation bands, make it possible to divide this tectonosequence into two internal sequences. Sequence IIA, which includes the lower portion of the Missão Velha Formation and sequence IIB, is composed by the upper section of the Missão Velha and Abaiara Formations The Sequence IIA below, composed only by the Low Accommodation System Track, includes crossbedding sandstones interbedded with massive mudstones, which are interpreted as deposits of sandy gravel beds wandering rivers. Sequence IIB, above, is more complex, showing a basal Low Accommodation System Track and a High Accommodation System Track at the top, separated by an expansion surface. The lower System Track, related to the upper portion of the Missão Velha Formation, is composed by a series of amalgamated channels, separated by erosion surfaces, interpreted as deposits of a belt of braided channels. The High Accommodation System Track, correlated with the Abaiara Unit, is marked by a significant increase in the A / S, resulting in the progradation of a system of braided river deltas with aeolic influence. Regarding tectonic evolution, the stratigraphic study indicates that the Tectonosequence Rift in the Araripe basin was developed in two phases: first characterized by a beginning of rifting, related to Sequence IIA, followed by a phase of syndepositional deformation, represented by sequence IIB. The first phase was not influenced by the development of large faults, but was influenced by a sharp and continuous decrease of accommodation space that permitted a change in depositional patterns, establishing a new depositional architecture. In turn, the stage of syndepositional deformation allowed for the generation of enough accommodation space for the preservation of fluvial-lacustrine deposits and conditioned the progradation of a braided river-dominated delta system.
Resumo:
It is presented an integrated geophysical investigation of the spatial distribution of faults and deformation bands (DB´s) in a faulted siliciclastic reservoir analogue, located in Tucano Basin, Bahia State, northeastern Brazil. Ground Penetrating Radar (GPR) and permeability measurements allowed the analysis of the influence of DB´s in the rock permeability and porosity. GPR data were processed using a suitable flow parametrization in order to highlight discontinuities in sedimentary layers. The obtained images allowed the subsurface detection of DB´s presenting displacements greater that 10 cm. A good correlation was verified between DB´s detected by GPR and those observed in surface, the latter identified using conventional structural methods. After some adaptations in the minipermeameter in order to increase measurement precision, two approaches to measure permeabilities were tested: in situ and in collected cores. The former approach provided better results than the latter and consisted of scratching the outcrop surface, followed by direct measurements on outcrop rocks. The measured permeability profiles allowed to characterize the spatial transition from DB´s to undeformed rock; variation of up to three orders of magnitude were detected. The permeability profiles also presented quasi-periodic patterns, associated with textural and granulometric changes, possibly associated to depositional cycles. Integrated interpretation of the geological, geophysical and core data, provided the subsurface identification of an increase in the DB´s number associated with a sedimentary layer presenting granulometric decrease at depths greater than 8 m. An associated sharp decrease in permeability was also measured in cores from boreholes. The obtained results reveal that radagrams, besides providing high resolution images, allowing the detection of small structures (> 10 cm), also presented a correlation with the permeability data. In this way, GPR data may be used to build upscaling laws, bridging the gap between outcrop and seismic data sets, which may result in better models for faulted reservoirs
Resumo:
The Rio do Peixe Basin is located in the border of Paraíba and Ceará states, immediately to the north of the Patos shear zone, encompassing an area of 1,315 km2. This is one of the main basins of eocretaceous age in Northeast Brazil, associated to the rifting event that shaped the present continental margin. The basin can be divided into four sub-basins, corresponding to Pombal, Sousa, Brejo das Freiras and Icozinho half-grabens. This dissertation was based on the analysis and interpretation of remote sensing products, field stratigraphic and structural data, and seismic sections and gravity data. Field work detailed the lithofacies characterization of the three formations previously recognised in the basin, Antenor Navarro, Sousa and Rio Piranhas. Unlike the classical vertical stacking, field relations and seismostratigraphic analysis highlighted the interdigitation and lateral equivalency between these units. On bio/chrono-stratigraphic and tectonic grounds, they correlate with the Rift Tectonosequence of neocomian age. The Antenor Navarro Formation rests overlies the crystalline basement in non conformity. It comprises lithofacies originated by a braided fluvial system system, dominated by immature, coarse and conglomeratic sandstones, and polymict conglomerates at the base. Its exposures occur in the different halfgrabens, along its flexural margins. Paleocurrent data indicate source areas in the basement to the north/NW, or input along strike ramps. The Sousa Formation is composed by fine-grained sandstones, siltites and reddish, locally grey-greenish to reddish laminated shales presenting wavy marks, mudcracks and, sometimes, carbonate beds. This formation shows major influence of a fluvial, floodplain system, with seismostratigraphic evidence of lacustrine facies at subsurface. Its distribution occupies the central part of the Sousa and Brejo das Freiras half-grabens, which constitute the main depocenters of the basin. Paleocurrent analysis shows that sediment transport was also from north/NW to south/SE
Resumo:
The Palestina Graben is one of the NE-trending asymmetric grabens of the Araripe Basin. This basin rests on the precambrian terrains of the Transversal Zone, Borborema Province, immediately to the south of the Patos Lineament. It is part of the Interior Basins province of Northeastern Brazil, being related to the fragmentation of the Gondwana supercontinent and the opening of the South Atlantic ocean. The Palestina Graben trends NE-SW and presents an asymmetric geometry, controled by the NW extensional eocretaceous strain. The graben borders display distinct geometries. The SE border is a flexural margin, characterized by the non conformity of the eopaleozoic Mauriti Formation (the oldest unit of the basin) overlying the crystalline basement, but also affected by normal faults with small displacements. On the opposite, the NW border is continuous and rectilinear, being marked by normal faults with major displacements, that control the general tilting of the layers to the NW. In this sense, the Mauriti Formation is overlain by the Brejo Santo, Missão Velha (which also occurs in the Brejo Santo-Mauriti horst, to the NW of the fault border) and Abaiara formations, the latter restricted to the graben. The interpretation of available gravity data and a seismic line indicates that the main fault has a variable dip slip component, defining two deeper portions within the graben, in which the sedimentary column can reach thicknesses of up to 2 km. Regarding to the stratigraphy of Araripe Basin in the study area, the sedimentary package includes three distinct tectonosequences. The Paleozoic Syneclisis Tectonosequence is composed by the Mauriti Formation, deposited by a braided fluvial system. The Jurassic Tectonosequence, whose tectonic setting is still debatable (initial stage of the Neocomian rift, or a pre-rift syneclisis ?), is represented by the Brejo Santo Formation, originated in a distal floodplain related to ephemeral drainages. The Rift Tectonosequence, of neocomian age, includes the Missão Velha Formation, whose lower section is related to a braided to meandering fluvial system, outlining the Rift Initiation Tectonic Systems Tract. The upper section of the Missão Velha Formation is separated from the latter by a major unconformity. This interval was originated by a braided fluvial system, overlain by the Abaiara Formation, a deltaic system fed by a meandering fluvial system. Both sections correspond to the Rift Climax Tectonic Systems Tract. In the area, NE-trending normal to oblique faults are associated with NW transfer faults, while ENE to E-W faults display dominant strike slip kinematics. Both NE and E-W fault sets exhibit clear heritage from the basement structures (in particular, shear zones), which must have been reactivated during the eocretaceous rifting. Faults with EW trends display a dominant sinistral shear sense, commonly found along reactivated segments of the Patos Lineament and satellyte structures. Usually subordinate, dextral directional movements, occur in faults striking NNW to NE. Within this framework bearing to the Palestina Graben, classical models with orthogonal extension or pull-apart style deserve some caution in their application. The Palestina Graben is not limited, in its extremeties, by E-W transcurrent zones (as it should be in the case of the pull-apart geometry), suggesting a model close to the classic style of orthogonal opening. At the same time, others, adjacent depocenters (like the Abaiara-Jenipapeiro semi-graben) display a transtensional style. The control by the basement structures explains such differences
Resumo:
The Araripe Basin is located over Precambrian terrains of the Borborema Province, being part of Northeast Brazil inner basins. Its origin is related to the fragmentation of the Gondwana supercontinent and consequently opening of South Atlantic during early Cretaceous. The basin has a sedimentary infill encompassing four distinct evolution stages, comprising Paleozoic syneclisis, pre-rift, rift and post-rift. The target of this study comprises the post-rift section of the basin focusing deformational styles which affect evaporates from Ipubi Member of the Santana Formation, which is composed by gypsum and anidrite layers interbedded with shales. These units occur widespread across the basin. In the central part of the basin, near Nova Olinda-Santana do Cariri, evaporites are affected by an essentialy brittle deformation tipified by fibrous gypsum filled fractures, cutting massive layers of gypsum and anidrite. Veins with variable orientations and dips are observed in the region distributed over three main populations: i) a dominant NWSE with shallow to moderate NE dipping population, consisting of gypsum filled veins in which fibers are normal to vein walls; i) NE-SW veins with moderate SE dips containing subhorizontal growth fibers; and iii) N-S veins with shallow E-W dips with fibers oblique to vein walls. In the west portion of the basin, near Trindade-Ipubi-Araripina towns, evaporate layers are dominantly constituted by gypsum/anidrite finely stratified, showing a minor density of veins. These layers are affected by a unique style of deformation, more ductile, typified by gentle to open horizontal normal folding with several tens of meters length and with double plunging NW-SE or NE-SW hinges, configuring domic features. In detail, gypsum/anidrite laminae are affected by metre to decimeter scale close to tight folding, usually kinked, with broken hinges, locally turning into box folds. Veins show NE-SW main directions with shallow NE dips, growth fibers are parallel to vein walls, constituting slickenfibers. This region is marked by faults that affect Araripina Formation with NW-SE, NE-SW and E-W directions. The main structural styles and general orientations of structures which affected the post-rift section of Araripe Basin yielded important kinematic information analysis which led us to infer a E-W to NE-SW extension direction to the northeastern part of the Basin, whereas in the southeastern part, extension occurred in N-S direction. Thus, it was possible to determine a regional kinematic setting, through this analysis, characterizing a NE-SW to ENE-WSW system for the post-rift section, which is compatible with the tension settings for the Sout American Plate since Albian. Local variations at the fluid pressure linked (or not) to sedimentary overload variation define local tension settings. This way, at the northeastern portion of the basin, the post-rift deformation was governed by a setting which σ 1 is sub-horizontal trending NE-SW and, σ 3 is sub-vertical, emphasizing a reverse fault situation. At the southwestern portion however there was characterized a strike slip fault setting, featuring σ 1 trending ENEWSW and σ3 trending NNW-SSE
Resumo:
Nd ISOTOPES IN THE PROVENANCE OF TERRIGENOUS AND CARBONATE ROCKS AND SEDIMENTS OF THE POTIGUAR BASIN, NORTHEASTERN BRAZIL. Mesozoic and Cenozoic rocks from the Potiguar Basin, including terrigenous and carbonate sediments have been investigated to identify their isotopic signature and source areas. Additionally, this study aims to determine the provenance of terrigenous and carbonate sediments on the Brazilian Continental shelf adjacent to Potiguar Basin. The Sm-Nd isotopic signatures of the rocks yielded model ages (TDM) in the range of 2,19- 2,88 Ga, indicating archean to paleoproterozoic sources from the basement. The terrigenous sediments yielded model ages (TDM) in the range of 2,31-2,26 Ga, from 17,5 to 0 cm depth. Despite the small number of samples, limited variations of provenance ages indicates the homogenization of the sediments, probably due to the strong influence of the basement, as the main source of sediments to the shelf. The Sm-Nd isotopic signatures of the carbonate sediments yielded model ages (TDM) in the range of 2,09-2,61 Ga, indicating archean to paleoproterozoic sources from the basement. The results also indicate that the shelf sediments are mainly derived from the Açu River or other small rivers from the Setentrional Sector of Rio Grande do Norte State. The littoral drift doesn´t seem to contribute with sediments from the Oriental Sector since isotopic signatures from this sector were not detected.
Resumo:
The Cumuruxatiba basin is located at the southern coast State of Bahia in northeastern of Brazil. This basin was formed in distensional context, with rifting and subsequent thermal phase during Neocomian to late Cretaceous. At Cenozoic ages, the Abrolhos magmatism occurs in the basin with peaks during the Paleocene and Eocene. In this period, there was a kinematic inversion in the basin represented by folds related to reverse faults. Structural restoration of regional 2D seismic sections revealed that most of the deformation was concentrated at the beginning of the Cenozoic time with the peak at the Lower Eocene. The post-Eocene is marked by a decrease of strain rate to the present. The 3D structural modeling revealed a fold belt (trending EW to NE-SW) accommodating the deformation between the Royal Charlotte and Sulphur Minerva volcanic highs. The volcanic eruptions have caused a differential overburden on the borders of the basin. This acted as the trigger for halokinesis, as demonstrated by physical modeling in literature. Consequently, the deformation tends to be higher in the edges of the basin. The volcanic rocks occur mainly as concordant structures (sills) in the syn-tectonic sediment deposition showing a concomitant deformation. The isopach maps and diagrams of axis orientation of deformation revealed that most of the folds were activated and reactivated at different times during the Cenozoic. The folds exhibit diverse kinematic patterns over time as response to behavior of adjacent volcanic highs. These interpretations allied with information on the petroleum system of the basin are important in mapping the prospects for hydrocarbons