904 resultados para BRANCHED POLY(METHYL METHACRYLATE)S
Resumo:
Fulgides and fulgimides are important organic photochromic compounds and can switch between the open forms and the closed forms with light. The 3-indolylfulgides and 3-indolylfulgimides exhibit promising photochromic properties and have great potential in optical memory devices, optical switches and biosensors. Copolymers containing 3-indolylfulgides/indolylfulgimides synthesized via free radical polymerizations increase conformation changes and allow the photochromic compounds to be uniformly distributed in the polymer matrix. A trifluoromethyl 3-indolylfulgide and two trifluoromethyl 3-indolylfulgimides with one or two polymerizable N-stryryl group(s) were prepared. Copolymerization with methyl methacrylate provided two linear copolymers or a cross-linked copolymer. The properties of the monomeric fulgide/fulgimides and copolymers in toluene or as thin films were characterized. In general, the photochromic monomers and copolymers revealed similar photochromic properties and exhibited good thermal and photochemical stability. All compounds absorb visible light in both open forms and closed forms. The closed form copolymers were more stable than the open form copolymers and showed little or no degradation after 400 h. The photochemical degradation rate was less than 0.03% per cycle. In films, conformational restrictions were observed for the open forms suggesting that the preparation of films from the closed forms is advantageous. Two novel methyl 3-indolylfulgimides with one or two polymerizable N-stryryl group(s) were prepared. Copolymerization of acrylamide with the methyl indolylfulgimides or the trifluoromethyl indolylfulgimides yielded two aqueous soluble linear copolymers and two photochromic hydrogels. The closed form copolymers containing trifluoromethyl indolylfulgimides were hydrolyzed in aqueous solution by replacing the trifluoromethyl group with a carboxylic acid group. The resulting carboxylic copolymers were also photochromic. The copolymers containing methyl fulgimides were stable in aqueous solutions and did not hydrolyze. Both methyl and carboxylic copolymers exhibited good stability in aqueous solutions. In general, the open form copolymers were more stable than the closed form copolymers, and the copolymers revealed better stability in acidic solution than neutral solution. The linear copolymers displayed better photochemical stability in neutral solution and degraded up to 22% after 105 cycles. In contrast, the hydrogels showed enhanced fatigue resistance in acidic condition and underwent up to 60 cycles before degrading 24%.
Resumo:
The research activity was focused on the transformation of methyl propionate (MP) into methyl methacrylate (MMA), avoiding the use of formaldehyde (FAL) thanks to a one-pot strategy involving in situ methanol (MeOH) dehydrogenation over the same catalytic bed were the hydroxy-methylation/dehydration of MP with FAL occurs. The relevance of such research line is related to the availability of cheap renewable bio-glycerol from biodiesel production, from which MP can be obtained via a series of simple catalytic reactions. Moreover, the conventional MMA synthesis (Lucite process) suffers from safety issues related to the direct use of carcinogenic FAL and depends on non-renewable MP. During preliminary studies, ketonization of carboxylic acids and esters has been recognized as a detrimental reaction which hinders the selective synthesis of MMA at low temperature, together with H-transfer hydrogenation with FAL or MeOH as the H-donor at higher temperatures. Therefore, ketonization of propionic acid (PA) and MP was investigated over several catalysts (metal oxides and metal phosphates), to obtain a better understanding of the structure-activity relationship governing the reaction and to design a catalyst for MMA synthesis capable to promote the desired reaction while minimizing ketonization and H-transfer. However, ketonization possesses scientific and industrial value itself and represents a strategy for the upgrade of bio oils from fast pyrolysis of lignocellulosic materials, a robust and versatile technology capable to transform the most abundant biomass into liquid biofuels. The catalysts screening showed that ZrO2 and La2O3 are the best catalysts, while MgO possesses low ketonization activity, but still, H-transfer parasitic hydrogenation of MMA reduces its yield over all catalysts. Such study resulted in the design of Mg/Ga mixed oxides that showed enhanced dehydrogenating activity towards MeOH at low temperatures. It was found that the introduction of Ga not only minimize ketonization, but also modulates catalyst basicity reducing H-transfer hydrogenations.
Resumo:
The program of my PhD studies has been dealing with the investigation of the research outcomes that may result from the use of luminescent Iridium(III) cyclometalated complexes in the field of polymer science. In particular, my activity has been focused on exploring two main applicative contexts, i.e. Ir(III) complexes for preparing polymers and in combination with polymers. In the first part, a new set of luminescent Ir(III) complexes was exploited as photocatalysts for light-assisted atom transfer radical polymerization of methyl methacrylate. The decoration of both cyclometalated and ancillary ligands with sp3 hybridized nitrogen substituents together with the use of specific counterions, imparted suitable photophysical and redox properties for an efficient photocatalyzed process. The second part has been focused on the employment of Ir(III) tetrazole complexes as phosphorescent dyes in polymeric materials. Colourless luminescent solar concentrators were prepared blending two Ir(III) cyclometalates with acrylate polymers. Their performances were investigated, leading to promising outcomes comparable, or superior, to those obtained from colourless LSCs based on organic fluorophores. As a complementary approach, Ir(III) complexes were covalently linked to polymers in the side chain, to obtain a new class of metallopolymers. To this extent, a bifunctional tetrazolate molecule, equipped with a coordination site and a polymerizable unit, was designed. The photophysical properties of the resultant luminescent polymeric films were discussed. In the end, an additional project involving both polymers and metal compounds was carried out during my experience as a visiting PhD student at Humboldt – University of Berlin. Polystyrene and polyethylene glycol -based ion-exchange resins were functionalized with peptides through a ligation pathway, for the selective chelation of Copper(II) in aqueous solutions. The coordinating capability of the materials towards Cu2+ ions was tested by ICP-MS analysis. The resins strategically modified with ion-selective peptides, may be exploited in the preparation of water-processing devices.
Resumo:
The research project of my experimental thesis deals with the design, synthesis and characterization of a new series of luminescent metallapolymers to be exploited for their peculiar photophysical and opto-electronic properties. To this end, our design strategy consisted in the incorporation of brightly luminescent and colour tuneable Ir(III) cyclometalated complexes with general formula [Ir(C^N)2(N^N)]+, where C^N represents various phenyl piridine based cyclometalating ligands and N^N is an aromatic chelating N-heterocyle, into methyl methacrylate (MMA) based copolymers. Whereas the choice of the cyclometalating ligands was driven by the possibility to obtain different emission colours, the design of the N^N ligands was aimed to obtain a molecule capable of providing the chelate coordination to the metal centre and, at the same time, of being susceptible to polymerisation reactions. To fulfil these requirements, a new molecule (abbreviated as L) consisting in an alkylated 2-pyrydyl tetrazole structure equipped with a styryl unit was designed and successfully prepared. The preparation of the target cationic metallapolymers was accomplished by the complexation of the preformed MMA-L copolymers with different amounts of an appropriate Ir(III) dimeric precursor [(Ir(C^N)2Cl)2]. The investigation of the photophysical features of the new hybrid compounds in the solid state at r.t. suggested how these metallapolymers displayed brightly intense phosphorescent emissions, whose colour was found to span from blue to yellow according to the nature of the cyclometalating ligands. In all cases, the emissive performances were superior to those displayed by the corresponding mononuclear “model” complexes. These promising results pave the way for the application of this new class of metallapolymers as Luminescent Solar Concentrators for the photovoltaic technology and/or to solid state lighting.
Resumo:
Thermo-responsive materials have been of interest for many years, and have been studied mostly as thermally stimulated drug delivery vehicles. Recently acrylate and methacrylates with pendant ethylene glycol methyl ethers been studied as thermo responsive materials. This work explores thermo response properties of hybrid nanoparticles of one of these methacrylates (DEGMA) and a block copolymer with one of the acrylates (OEGA), with gold nanoparticle cores of different sizes. We were interested in the effects of gold core size, number and type of end groups that anchored the chains to the gold cores, and location of bonding sites on the thermo-response of the polymer. To control the number and location of anchoring groups we using a type of controlled radical polymerization called Reversible Addition Fragmentation Transfer (RAFT) Polymerization. Smaller gold cores did not show the thermo responsive behavior of the polymer but the gold cores did seem to self-assemble. Polymer anchored to larger gold cores did show thermo responsivity. The anchoring end group did not alter the thermoresponsivity but thiol-modified polymers stabilized gold cores less well than chains anchored by dithioester groups, allowing gold cores to grow larger. Use of multiple bonding groups stabilized the gold core. Using block copolymers we tested the effects of number of thiol groups and the distance between them. We observed that the use of multiple anchoring groups on the block copolymer with a sufficiently large gold core did not prevent thermo responsive behavior of the polymer to be detected which allows a new type of thermo-responsive hybrid nanoparticle to be used and studied for new applications.
Resumo:
Progress in making pH-responsive polyelectrolyte brushes with a range of different grafting densities is reported. Polymer brushes of poly(2-(diethylamino)ethyl methacrylate) were synthesised via atom transfer radical polymerisation on silicon wafers using a 'grafted from' approach. The [11-(2-bromo-2-methyl) propionyloxy]undecyl trichlorosilane initiator was covalently attached to the silicon via silylation, from which the brushes were grown using a catalytic system of copper(I) chloride and pentamethyldiethylenetriamine in tetrahydrofuran at 80°C. X-ray reflectivity was used to assess the initiator surfaces and an upper limit on the grafting density of the polymer was determined. The quality of the brushes produced was analysed using ellipsometry and atomic force microscopy, which is also discussed.
Resumo:
Poly(2-hydroxyethyl methacrylate) and copolymers of 2-hydroxyethyl methacrylate (HEMA) and 1-vinyl-2-pyrrolidone (VP) in the form of cylindrical samples (approximate to8mm x 20mm) have been prepared and the sorption of water into these cylinders has been studied by the mass-uptake methods and by magnetic-resonance imaging. The equilibrium water contents for the cylinders were found to vary systematically with the copolymer composition. Diffusion of water into the cylinders was found to follow Fickian behaviour for cylinders with high HEMA contents, with the diffusion coefficients obtained from mass-uptake studies dependent on the copolymer composition, varying from 1.7 x 10(-11) m(2) s(-1) for poly(HEMA) to 2.0 x 10(-11) m(2) s(-1) for poly(HEMA-co-VP) with a composition of 1:1. However, NMR-imaging studies showed that, while the profiles of the water diffusion fronts for cylinders with high HEMA contents were Fickian, that for the 1:1 copolymer was not and indicated that the mechanism was Case III. The polymers which were rich in VP were characterized by a water-sorption process which follows Case-III behaviour. (C) 2003 Society of Chemical Industry.
Resumo:
Multiarm star polymers are attractive materials due to their unusual bulk and solution properties. They are considered analogues of dendrimers with a wide range of applications, such as drug delivery, membranes, coatings and lithography.1 The advent of controlled polymerization made possible the existence of this unique class of organic nanoparticles (ONPs).2 Two major synthetic strategies are usually employed in the preparation of star polymers, the core-first and arm-first approaches. The core-first approach involves a controlled living polymerization using a multiarm initiator core while the arm-first methodology is based in the quenching of living polymers with multifunctional coupling agent or bifunctional vinyl compounds. Herein, we present the synthesis and characterization of a new star polymer, the multiarm star poly(2-hydroxyethyl methacrylate). The tetra-armed star polymer was prepared by reversible addition fragmentation chain-transfer (RAFT) polymerization using the core-first approach. The RAFT chain-transfer agent (RAFT CTA) pentaerythritol tetrakis[2-(dodecylthiocarbonothioylthio)-2-methylpropionate] was used as multiarm initiator core were 2-hydroxyethyl methacrylate (HEMA) was polymerized using AIBN as radical initiator. Structural characterization was performed by 1H NMR and FTIR. The new polymer is able to uptake large quantities of organic solvents, forming gels. The rheological behavior of these gels was also investigated.
Resumo:
Poly(ethylene-co-methyl acrylate) (EMA) and poly (caprolactone) triol (PCL-T) blends, a biodegradable aliphatic polyester with low molecular weight and moderate water solubility containing diltiazem hydrochloride (DZ) were studied in terms of the thermal and morphological properties, and drug release mechanism. An increase in the PCL-T content in the EMA/PCL-T/DZ films decreased the degree of DZ crystallinity. Drug release from these films is temperature-dependent, and it is possible to modify the drug release rate by adjusting the EMA/PCL-T composition of the blends. The mechanism of drug release is governed by PCL-T melting and PCL-T leaching from EMA matrix.
Resumo:
Biotinylated and non-biotinylated copolymers of ethylene oxide (EO) and 2-(diethylamino)ethyl methacrylate (DEAEMA) were synthesized by the atom transfer radical polymerization technique (ATRP). The chemical compositions of the copolymers as determined by NMR are represented by PEO₁₁₃PDEAEMA₇₀ and biotin-PEO₁₀₄PDEAEMA₉₃ respectively. The aggregation behavior of these polymers in aqueous solutions at different pHs and ionic strengths was studied using a combination of potentiometric titration, dynamic light scattering (DLS), static light scattering (SLS), and transmission electron microscopy (TEM). Both PEO-b-PDEAEMA and biotin-PEO-b-PDEAEMA diblock copolymers form micelles at high pH with hydrodynamic radii (Rh) of about 19 and 23 nm, respectively. At low pH, the copolymers are dispersed as unimers in solution with Rh of about 6-7 nm. However, at a physiological salt concentration (cs) of about 0.16M NaCl and a pH of 7-8, the copolymers form large loosely packed Guassian chains, which were not present at the low cs of 0.001M NaCl. The critical micelle concentrations (CMC) and the cytotoxicity of the copolymers were investigated to determine a suitable polymer concentration range for future biological applications. Both PEO-b-PDEAEMA and biotin-PEO-b-PDEAEMA diblock copolymers possess identical CMC values of about 0.0023 mg/g, while the cytotoxicity test indicated that the copolymers are not toxic up to 0.05mg/g (> 83% cell survival at this concentration).
Resumo:
Nitroxyl radicals such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) are highly selective oxidation catalysts for the conversion of primary alcohols into the corresponding aldehydes. In this study, direct tethering of TEMPO units onto linear poly(ethylene glycol) (PEG) has afforded macromolecular catalysts that exhibit solubility in both aqueous and organic solvents. Recovery of the dissolved polymer-supported catalyst has been carried out by precipitation with a suitable solvent such as diethyl ether. The high catalyst activities and selectivities associated traditionally with nitroxyl-mediated oxidations of alcohols are retained by the series of "linker-less" linear PEG-TEMPO catalysts in which the TEMPO moiety is coupled directly to the PEG support. Although the selectivity remains unaltered, upon recycling of the linker-less polymer-supported catalysts, extended reaction times are required to maintain high yields of the desired carbonyl compounds. Alternatively, attachment of two nitroxyl radicals onto each functionalized PEG chain terminus via a 5-hydroxyisophthalic acid linker affords branched polymer-supported catalysts. In stark contrast to the linker-less catalysts, these branched nitroxyls exhibit catalytic activities up to five times greater than 4-methoxy-TEMPO alone under similar conditions. In addition, minimal decrease in catalytic activity is observed upon recycling of these branched macromolecular catalysts via solvent-induced precipitation. The high catalytic activities and preservation of activity upon recycling of these branched systems is attributed to enhanced regeneration of the nitroxyl species as a result of intramolecular syn-proportionation.
Resumo:
The thermal properties, crystallization, and morphology of amphiphilic poly(D-lactide)-b-poly(N,N-dimethylamino- 2-ethyl methacrylate) (PDLA-b-PDMAEMA) and poly (L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PLLA-b-PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA-b-PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk-shape structure and, for high molecular weight samples, the particles displayed unusual star-like shape morphology.
Resumo:
Terpolymers of N-isopropylacrylamide, dodecyl methacrylate (DOMA) and poly(ethylene glycol) (PEG) methacrylate, were synthesized by random copolymerization, and the composition was controlled to achieve systems having different thermosensitivities. H-1 NMR spectra and gel permeation chromatography (GPC) were employed to characterize the different samples obtained. The solution properties were studied by employing spectrophotometry, fluorescence, and dynamic light scattering techniques. The chemical compositions in the final terpolymers are close to those in the feed. The polymers exhibited cloud point temperatures (T-es) varying from 17 to 52 degrees C. Micropolarity studies using I-1/I-3 ratio of the vibronic bands of pyrene show the formation of amphiphilic aggregates capable of incorporating hydrophobic drugs as the polymer concentration is increased. The critical aggregation concentration (CAC) increases from 3.6 x 10(-3) to 1 x 10(-2) g/l with the PEG content varying from 5 to 35 mol%. Anisotropy measurements confirm the results obtained by pyrene fluorescence and show that the aggregates resulting from intermolecular interactions present different organizations. The hydrodynamic diameters (Dh) of the aggregates determined by dynamic light scattering (DLS) vary from 40 to 150 nm depending on the terpolymer composition. The T-cs and Dh values decreased with the ionic strength, and this behavior was attributed to the dehydration of the polymeric micelles. The capacity of solubilization of the aggregates was evaluated by employing pyrene, and the obtained results confirm the ability to incorporate hydrophobic molecules. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
We show room temperature charge-density wave (CDW) characteristics in d.c. and a.c. electric data in pressed pellets of lightly doped poly(3-methylthiophene). The possibility of a Peierls glass is discussed and metastables states are observed. D.C. and A.C. data also show a state with negative differencial resistance.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)