932 resultados para BIOLOGICAL DIVERSITY
Resumo:
DNA methyltransferases (MTases) are a group of enzymes that catalyze the methyl group transfer from S-adenosyl-L-methionine in a sequence-specific manner. Orthodox Type II DNA MTases usually recognize palindromic DNA sequences and add a methyl group to the target base (either adenine or cytosine) on both strands. However, there are a number of MTases that recognize asymmetric target sequences and differ in their subunit organization. In a bacterial cell, after each round of replication, the substrate for any MTase is hemimethylated DNA, and it therefore needs only a single methylation event to restore the fully methylated state. This is in consistent with the fact that most of the DNA MTases studied exist as monomers in solution. Multiple lines of evidence suggest that some DNA MTases function as dimers. Further, functional analysis of many restriction-modification systems showed the presence of more than one or fused MTase genes. It was proposed that presence of two MTases responsible for the recognition and methylation of asymmetric sequences would protect the nascent strands generated during DNA replication from cognate restriction endonuclease. In this review, MTases recognizing asymmetric sequences have been grouped into different subgroups based on their unique properties. Detailed characterization of these unusual MTases would help in better understanding of their specific biological roles and mechanisms of action. The rapid progress made by the genome sequencing of bacteria and archaea may accelerate the identification and study of species- and strain-specific MTases of host-adapted bacteria and their roles in pathogenic mechanisms.
Resumo:
One of the fundamental questions concerning homologous recombination is how RecA or its homologues recognize several DNA sequences with high affinity and catalyze all the diverse biological activities. In this study, we show that the extent of single-stranded DNA binding and strand exchange (SE) promoted by mycobacterial RecA proteins with DNA substrates having various degrees of GC content was comparable with that observed for Escherichia coli RecA. However, the rate and extent of SE promoted by these recombinases showed a strong negative correlation with increasing amounts of sequence divergence embedded at random across the length of the donor strand. Conversely, a positive correlation was seen between SE efficiency and the degree of sequence divergence in the recipient duplex DNA. The extent of heteroduplex formation was not significantly affected when both the pairing partners contained various degrees of sequence divergence, although there was a moderate decrease in the case of mycobacterial RecA proteins with substrates containing larger amounts of sequence divergence. Whereas a high GC content had no discernible effect on E. coli RecA coprotease activity, a negative correlation was apparent between mycobacterial RecA proteins and GC content. We further show clear differences in the extent of SE promoted by E. coli and mycobacterial RecA proteins in the presence of a wide range of ATP:ADP ratios. Taken together, our findings disclose the existence of functional diversity among E. coli and mycobacterial RecA nucleoprotein filaments, and the milieu of sequence divergence (i.e., in the donor or recipient) exerts differential effects on heteroduplex formation, which has implications for the emergence of new genetic variants.
Resumo:
Land-use changes influence local biodiversity directly, and also cumulatively, contribute to regional and global changes in natural systems and quality of life. Consequent to these, direct impacts on the natural resources that support the health and integrity of living beings are evident in recent times. The Western Ghats being one of the global biodiversity hotspots, is reeling under a tremendous pressure from human induced changes in terms of developmental projects like hydel or thermal power plants, big dams, mining activities, unplanned agricultural practices,monoculture plantations, illegal timber logging, etc. This has led to the once contiguous forest habitats to be fragmented in patches, which in turn has led to the shrinkage of original habitat for the wildlife, change in the hydrological regime of the catchment, decreased inflow in streams,human-animal conflicts, etc. Under such circumstances, a proper management practice is called for requiring suitable biological indicators to show the impact of these changes, set priority regions and in developing models for conservation planning. Amphibians are regarded as one of the best biological indicators due to their sensitivity to even the slightest changes in the environment and hence they could be used as surrogates in conservation and management practices. They are the predominating vertebrates with a high degree of endemism (78%) in Western Ghats. The present study is an attempt to bring in the impacts of various land-uses on anuran distribution in three river basins. Sampling was carried out for amphibians during all seasons of 2003-2006 in basins of Sharavathi, Aghanashini and Bedthi. There are as many as 46 species in the region, one of which is new to science and nearly 59% of them are endemic to the Western Ghats. They belong to nine families, Dicroglossidae being represented by 14 species,followed by Rhacophoridae (9 species) and Ranidae (5 species). Species richness is high in Sharavathi river basin, with 36 species, followed by Bedthi 33 and Aghanashini 27. The impact of land-use changes, was investigated in the upper catchment of Sharavathi river basin. Species diversity indices, relative abundance values, percentage endemics gave clear indication of differences in each sub-catchment. Karl Pearson’s correlation coefficient (r) was calculated between species richness, endemics, environmental descriptors, land-use classes and fragmentation metrics. Principal component analysis was performed to depict the influence of these variables. Results show that sub-catchments with lesser percentage of forest, low canopy cover, higher amount of agricultural area, low rainfall have low species richness, less endemic species and abundant non-endemic species, whereas endemism, species richness and abundance of endemic species are more in the sub-catchments with high tree density, endemic trees, canopy cover, rainfall and lower amount of agriculture fields. This analysis aided in prioritising regions in the Sharavathi river basin for further conservation measures.
Resumo:
Bolsa Chica Artificial Reef (BCAR) was constructed in November 1986 with 10,400 tons of concrete rubble and eight concrete and steel barges. Prior to any additional augmentation of BCAR, the u.s. Army Corps of Engineers and the California Coastal Commission required the California Department of Fish and Game (CDFG) to survey the bioloqical communities on and around BCAR. In April 1992, qualitative surveys of the biological communities were conducted on one of the eight modules at BCAR and at a nearby sand-only site. One of the modules, Module D, located in 90 feet of water (MLLW), was surveyed for fish, macroinvertebrates, and turf community organisms (small plants and sessile animals). Twelve species of fish were observed, including kelp bass (Paralabrax clathratus) and barred sand bass (P. nebulifer). Eight macroinvertebrate species were observed, rock scallops (Crassedoma giganteum) being the most abundant. The turf community was comprised of thirteen invertebrate taxa, among which erect ectoprocts (Bugula spp.) were the most numerous. Two species of foliose red algae (Rhodymenia pacifica and Anisocladella pacifica) were also observed. The reef has reached an advanced stage of successional development with fish and invertebrate communities diverse and well established. However, due,.to its depth and the turbidity of surrounding waters, this reef is not likely to ever support a diverse algal community. The diversity and abundance of fish and macroinvertebrates were, as to be expected, much lower in the nearby sand-only site. Only two species of fish and seven macroinvertebrate species were observed. Of these, only the sea pen, Stylatula elongata, was common. Overall, when compared to nearby sand-only habitats, Bolsa Chica Artificial Reef appears to contribute substantially to the local biological productivity. In addition, the concrete rubble used in BCAR' s construction appears to be performing as well as the quarry rock used in all of CDFG's experimental reefs. (Document pdf contains 22 pages)
Resumo:
Protozoa feed on and regulate the abundance of most types of aquatic microorganisms, and they are an integral part of all aquatic microbial food webs. Being so small, aerobic protozoa thrive at low oxygen tensions, where they feed (largely unaffected by metazoan grazing) on the abundance of other microorganisms. In anaerobic environments, they are the only phagotrophic organisms, and they live in unique symbiotic consortia with methanogens, sulphate reducers and non-sulphur purple bacteria. The number of extant species of protozoa may be quite modest (the global number of ciliate species is estimated at 3000), and most of them probably have cosmopolitan distributions. This will undoubtedly make it easier to carry out further tasks, e.g. understanding the role of protozoan species diversity in the natural environment.
Resumo:
Habitat fragmentation usually results in alteration of species composition or biological communities. However, little is known about the effect of habitat fragmentation on the fig/fig wasp system. In this study, we compared the structure of a fig wasp community and the interaction between figs and fig wasps of Ficus racemosa L. in a primary forest, a locally fragmented forest and a highly fragmented forest. Our results show that, in the highly fragmented forest, the proportion of pollinator wasps is lower and the proportion of non-pollinator wasps is higher compared with the primary forest and locally fragmented forest. The proportion of fruits without pollinator wasps in mature fruits is also greatly increased in the highly fragmented forest. The proportion of galls in all female flowers increases in the highly fragmented forest, whereas the proportion of viable seeds does not change considerably. The disruption of groups of fig trees results in a decrease in pollinator wasps and even might result in the extinction of pollinator wasps in some extreme cases, which may transform the reciprocal interaction between figs and fig wasps into a parasite/host system. Such an effect may lead to the local extinction of this keystone plant resource of rain forests in the process of evolution, and thereby, may change the structure and function of the tropical rain forest.
Resumo:
The impact of Petrochemical Special Economic Zone (PETZONE) activities on the health status of Jafari Creek was studied by assessing the changes in macroinvertebrate assemblages in nine sites during September 2006- January 2008. Furthermore to evaluate the ecological status of the Jafari Creek the WFD indices (i.e. AMBI, M-AMBI) were used. The relationship between spatial pattern of macro invertebrate assemblages and ambient factors (i.e. water temperature, salinity, pH, dissolved oxygen, turbidity, electrical conductivity, total dissolved solid, total hardness, total nitrogen, ammonia, total phosphorous, chemical oxygen demand, biological oxygen demand, sediment grain size distribution, sediment organic content, heavy metals contents) was measured. Background Enrichment indices, Contamination factor and Contamination degree, were used to assess the health status in the study area based on Nickel, Lead, Cadmium and Mercury contents of the sediments. The macrobenthic communities had a low diversity and were dominated by opportunistic taxa, and the AMBI and M-AMBI indices need to be calibrated before using in Persian Gulf and its coastal waters. The BIO-ENV analysis identified pH, dissolved oxygen, TDS, and the total organic content of sediments as the major environmental variables influencing the infaunal pattern. This suggests that management should attempt to ensure minimal disturbance to environmental variables underlying the spatial variation in macroinvertebrate assemblages. Background Enrichment indices showed that the health of Jafari Creek has declined over time due to the constant discharge of heavy metals to the Creek system. Furthermore WQS index shows that the quality condition of the water column in Jafari Creek, regard to the calculated number (3) is week. These indices also identified a significant degree of pollution in the study area. The decrease in the ecological potential of Jafari Creek was best highlighted by the alteration in macrobenthic assemblages.
Resumo:
The pharaoh Cuttlefish (Sepia Pharaonis) is the most abundant species in the persian gulf and oman sea. The stock patterns of this species was studied conserning biological, morphological and electrophoretical aspects. In addition to measuring the biological patterns; 21 quantitative and qualitative factors were measured or counted. There tissues namely muscle, eye and liver were also used for further polyacrylamide electrophoresis analysis (SDS-Page method). The densitograms of protein bands of each tissue were prepared by Gel-Scanner and also the amount of bands' areas were estimated. The results of LSD test showed that tentacle length (TL), Tentacle club length (TCL) and TCL were indicative factors which they showed significant difference between male TL and female specimen of Bushehr and Balouchestan regions. Regarding to length and weight frequencies data the results indicated that males are always bigger than females and also, the cuttlefishes of the gulf of oman are bigger than persian gulf's samples. There were found a significant sample correlation (95%) between different quantitative parameters and the most correlation (0.963) was found to be between TL and TCL; whereas the less correlation (0.384) was observed between GL and LA3. However the gill length factor illustrated the less correlation with the other factors. The results of Cluster analysis for both sexes showed that the cuttlefishes of both studied regions belongs to seperate stocks. The electrophoretic experiments of proteins showed that the protein bands of the sample tissue of muscle and eye from both sampling areas revealed significant differences; whereas the tissue of liver wasn't recognized as an indicative tissue for population studies. Taking into consideration the findings of the present study including: (1) difference in spawning season, (2) results of dendrograms, (3) observed Significant differences in one-way analysis of variance (ANOVA) for morphometric measurements, (4) differences in body length and weight, (5) ecological variations of the persian gulf and oman sea, (6) as well as the results of electrophoresis of proteins have indicatend that: "The Pharaoh cuttlefishes of Bushehr and Balouchestan waters belong to two seperate stocks. Also, it is believed that each region has propably two different populations and more studies are needed to approve this result.
Resumo:
Growing of fish in cages is currently practiced in Uganda and was first introduced in northern Lake Victoria in 2010. An environment monitoring study was undertaken at Source of the Nile, a private cage fish farm, in Napoleon gulf, northern Lake Victoria. In-situ measurements of key environmental (temperature, dissolved oxygen, pH and conductivity) and biological (algae, zooplankton, macro-benthos) variables were made at three transects: Transect 1- the site with fish cages (WC); transect 2- upstream of the fish cages (USC-control) and Transect 3- downstream of the cages (DSC). Upstream and Downstream sites were located approximately 1.0 km from the fish cages. Environment parameters varied spatially and temporally but were generally within safe ranges for freshwater habitats. Higher concentrations of SRP (0.015-0.112 Mg/L) occurred at USC during February, September and at DSC in November; NO2-N (0.217- 0.042 mg/L) at USC and DSC in February and November; NH4-N (0.0054- 0.065 Mg/L) at WC and DSC in February, May and November. Algal bio-volumes were significantly higher at WC (F (2,780)=4.619; P=0.010). Zooplankton species numbers were consistently lower at WC with a significant difference compared to the control site (P=0.032). Macro-benthos abundance was consistently higher at the site with cages where mollusks and low-oxygen and pollution-tolerant chironomids were the dominant group. Higher algal biomass, concentration of low-oxygen/pollution-tolerant macro-benthos and depressed zooplankton diversity at WC suggested impacts from the fish cages on aquatic biota.
Resumo:
Micronutrients play a very important role in biological processes for wastewater treatment. Many industrial wastewaters lack in nutrients (macronutrients and micronutrients) required for microbial growth, and this is one of the main problems at many activated sludge plants treating industrial wastewater. The microbial community structure is one of the important factors controlling the pollutant-degrading capacity of biological wastewater treatment system. In this study, the concentrations of micronutrients of the textile wastewater discharged from a textile plant were determined, and the effects of micronutrients on treatment efficiency and microorganism community structure of the biological treatment system were studied. The results showed that the optimal concentrations of magnesium, molybdenum, zinc, thiamine and niacin in the textile wastewater were 5.0, 2.0, 1.0, 1.0 and 1.0mg/L, respectively. The COD removal rates when magnesium, molybdenum, zinc, thiamine and niacin were added individually to the wastewater in their optimal concentrations were 1.8, 1.4, 1.3, 1.6 and 2.2 times of that of the control, respectively. The improving effects of combinations of zinc and thiamine, zinc and niacin, thiamine and niacin were better than single micronutrient. The diversity of quinones (DQ) changed significantly after the micronutrient was added into the wastewater treatment system. This indicated that there was probably a feasibility of optimizing the biological treatment performances and microorganism community structure of textile wastewater treatment system through micronutrient supplement.
Resumo:
A total of six stations in the Han River system were selected for establishing polyurethane foam units (PFUs) to collect protozoans, including phytomastigophorans, zoomastigophorans, amoebas and ciliates, in July 1993. In the bioassessment of microbial communities using the PFUs, the number of species decreased as pollution intensity increased. The diversity index values calculated at the main stations generally agreed with the pollution status of the stations. Anyang-Chon (Chon means stream) showed the lowest diversity value (1.89), and all stations, except Masok and Anyang-Chon, showed diversity index values ranging from 3.15 to 3.93. The highest heterotrophic index (HI) value was detected in Anyang-Chon followed by Masok-Chon. The number of species at the main stations reached a maximum on day 11 of being exposed to PFUs. The results of S-eq, G and T-90% all suggest that bioassessments using the PFU system were well matched with pollution status of the water. All microbial variables were significantly correlated with comprehensive chemical pollution indices, P-a and P-b, with correlation coefficients ranging from r=0.87 to r=0.96.
Resumo:
Javier G. P. Gamarra and Ricard V. Sole (2002). Biomass-diversity responses and spatial dependencies in disturbed tallgrass prairies. Journal of Theoretical Biology, 215 (4) pp.469-480 RAE2008
Resumo:
Coastal lagoons are defined as shallow coastal water bodies partially separated from the adjacent sea by a restrictive barrier. Coastal lagoons are protected under Annex I of the European Habitats Directive (92/43/EEC). Lagoons are also considered to be “transitional water bodies” and are therefore included in the “register of protected areas” under the Water Framework Directive (2000/60/EC). Consequently, EU member states are required to establish monitoring plans and to regularly report on lagoon condition and conservation status. Irish lagoons are considered relatively rare and unusual because of their North Atlantic, macrotidal location on high energy coastlines and have received little attention. This work aimed to assess the physicochemical and ecological status of three lagoons, Cuskinny, Farranamanagh and Toormore, on the southwest coast of Ireland. Baseline salinity, nutrient and biological conditions were determined in order to provide reference conditions to detect perturbations, and to inform future maintenance of ecosystem health. Accumulation of organic matter is an increasing pressure in coastal lagoon habitats worldwide, often compounding existing eutrophication problems. This research also aimed to investigate the in situ decomposition process in a lagoon habitat together with exploring the associated invertebrate assemblages. Re-classification of the lagoons, under the guidelines of the Venice system for the classifications of marine waters according to salinity, was completed by taking spatial and temporal changes in salinity regimes into consideration. Based on the results of this study, Cuskinny, Farranamanagh and Toormore lagoons are now classified as mesohaline (5 ppt – 18 ppt), oligohaline (0.5 ppt – 5 ppt) and polyhaline (18 ppt – 30 ppt), respectively. Varying vertical, longitudinal and transverse salinity patterns were observed in the three lagoons. Strong correlations between salinity and cumulative rainfall highlighted the important role of precipitation in controlling the lagoon environment. Maximum effect of precipitation on the salinity of the lagoon was observed between four and fourteen days later depending on catchment area geology, indicating the uniqueness of each lagoon system. Seasonal nutrient patterns were evident in the lagoons. Nutrient concentrations were found to be reflective of the catchment area and the magnitude of the freshwater inflow. Assessment based on the Redfield molar ratio indicated a trend towards phosphorus, rather than nitrogen, limitation in Irish lagoons. Investigation of the decomposition process in Cuskinny Lagoon revealed that greatest biomass loss occurred in the winter season. Lowest biomass loss occurred in spring, possibly due to the high density of invertebrates feeding on the thick microbial layer rather than the decomposing litter. It has been reported that the decomposition of plant biomass is highest in the preferential distribution area of the plant species; however, no similar trend was observed in this study with the most active zones of decomposition varying spatially throughout the seasons. Macroinvertebrate analysis revealed low species diversity but high abundance, indicating the dominance of a small number of species. Invertebrate assemblages within the lagoon varied significantly from communities in the adjacent freshwater or marine environments. Although carried out in coastal lagoons on the southwest coast of Ireland, it is envisaged that the overall findings of this study have relevance throughout the entire island of Ireland and possibly to many North Atlantic coastal lagoon ecosystems elsewhere.
Resumo:
Primates must navigate complex social landscapes in their daily lives: gathering information from and about others, competing with others for food and mates, and cooperating to obtain rewards as well. Gaze-following often provides important clues as to what others see, know, or will do; using information about social attention is thus crucial for primates to be competent social actors. However, the cognitive bases of the gaze-following behaviors that primates exhibit appear to vary widely across species. The ultimate challenge of such analyses will therefore be to understand why such different cognitive mechanisms have evolved across species.