988 resultados para BGPM mutation-associated erythrocytosis
Resumo:
OBJECTIVE: The previously described c655G>A mutation of the human cytochrome P450 aromatase gene (P450aro, CYP19) results in aberrant splicing due to disruption of a donor splice site. To explain the phenotype of partial aromatase deficiency observed in a female patient described with this mutation, molecular consequences of the c655G>A mutation were investigated. DESIGN: To investigate whether the c655G>A mutation causes an aberrant spliced mRNA lacking exon 5 (-Ex5), P450aro RNA was analysed from the patient's lymphocytes by reverse transcription polymerase chain reaction (RT-PCR) and by splicing assays performed in Y1 cells transfected with a P450aro -Ex5 expression vector. Aromatase activity of the c655G>A mutant was predicted by three dimensional (3D) protein modelling studies and analysed in transiently transfected Y1 cells. Exon 5 might be predicted as a poorly defined exon suggesting a susceptibility to both splicing mutations and physiological alternative splicing events. Therefore, expression of the -Ex5 mRNA was also assessed as a possibly naturally occurring alternative splicing transcript in normal human steroidogenic tissues. PATIENTS: An aromatase deficient girl was born with ambiguous genitalia. Elevated serum LH, FSH and androgens, as well as cystic ovaries, were found during prepuberty. At the age of 8.4 years, spontaneous breast development and a 194.6 pmol/l serum oestradiol level was observed. RESULTS: The -Ex5 mRNA was found in lymphocytes of the P450aro deficient girl and her father, who was a carrier of the mutation. Mutant minigene expression resulted in complete exon 5 skipping. As expected from 3D protein modelling, -Ex5 cDNA expression in Y1 cells resulted in loss of P450aro activity. In addition, the -Ex5 mRNA was present in placenta, prepubertal testis and adrenal tissues. CONCLUSIONS: Alternative splicing of exon 5 of the CYP19 gene occurs in the wild type (WT) as well as in the c655G>A mutant. We speculate that for the WT it might function as a regulatory mechanism for aromatization, whereas for the mutant a relative prevalence of the shorter over the full-length protein might explain the phenotype of partial aromatase deficiency.
Resumo:
BACKGROUND: Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease that constitutes the most common genetic cause of renal failure in the first three decades of life. Using positional cloning, six genes (NPHP1-6) have been identified as mutated in NPHP. In Joubert syndrome (JBTS), NPHP may be associated with cerebellar vermis aplasia/hypoplasia, retinal degeneration and mental retardation. In Senior-Løken syndrome (SLSN), NPHP is associated with retinal degeneration. Recently, mutations in NPHP6/CEP290 were identified as a new cause of JBTS. METHODS: Mutational analysis was performed on a worldwide cohort of 75 families with SLSN, 99 families with JBTS and 21 families with isolated nephronophthisis. RESULTS: Six novel and six known truncating mutations, one known missense mutation and one novel 3 bp pair in-frame deletion were identified in a total of seven families with JBTS, two families with SLSN and one family with isolated NPHP.
Resumo:
PURPOSE: To report a large, consanguineous Algerian family affected with Leber congenital amaurosis (LCA) or early-onset retinal degeneration (EORD). METHODS: All accessible family members underwent a complete ophthalmic examination, and blood was obtained for DNA extraction. Homozygosity mapping was performed with markers flanking 12 loci associated with LCA. The 15 exons of TULP1 were sequenced. RESULTS: Seven of 30 examined family members were affected, including five with EORD and two with LCA. All patients had nystagmus, hemeralopia, mild myopia, and low visual acuity without photophobia. Fundus features were variable among EORD patients: typical spicular retinitis pigmentosa or clumped pigmented retinopathy with age-dependent macular involvement. A salt-and-pepper retinopathy with midperipheral retinal pigment epithelium (RPE) atrophy was present in the older patients with LCA, whereas the retina appeared virtually normal in the younger ones. Both scotopic and photopic electroretinograms were nondetectable. Fundus imaging revealed a perifoveal ring of increased fundus autofluorescence (FAF) in the proband, and optical coherence tomography disclosed a thinned retina, mainly due to photoreceptor loss. Linkage analysis identified a region of homozygosity on chromosome 6, region p21.3, and mutation screening revealed a novel 6-base in-frame duplication, in the TULP1 gene. CONCLUSIONS: Mutation in the TULP1 gene is a rare cause of LCA/EORD, with only 14 mutations reported so far. The observed intrafamilial phenotypic variability could be attributed to disease progression or possibly modifier alleles. This study provides the first description of FAF and quantitative reflectivity profiles in TULP1-related retinopathy.
Resumo:
Ischemic colitis results from insufficient blood supply to the large intestine and is often associated with hypercoagulable states. The condition comprises a wide range presenting with mild to fulminant forms. Diagnosis remains difficult because these patients may present with non-specific abdominal symptoms. We report a 51- year-old female patient with known Leiden factor V mutation as well as systemic lupus erythematous along with antiphospholipid syndrome suffering from recurrent ischemic colitis. At admission, the patient complained about abdominal pain, diarrhea and rectal bleeding lasting for 24 hours. Laboratory tests showed an increased C-reactive protein (29.5 mg/dl), while the performed abdominal CT-scan revealed only a dilatation of the descending colon along with a thickening of the bowel wall. Laparotomy was performed showing an ischemic colon and massive peritonitis. Histological examination proved the suspected ischemic colitis. Consecutively, an anti-coagulation therapy with coumarin and aspirin 100 was initiated. Up to the time point of a follow up examination no further ischemic events had occurred. This case illustrates well the non-specific clinical presentation of ischemic colitis. A high index of suspicion, recognition of risk factors and a history of non-specific abdominal symptoms should alert the clinicians to the possibility of ischemic disease. Early diagnosis and initiation of anticoagulation therapy or surgical intervention in case of peritonitis are the major goals of therapy.
Resumo:
BACKGROUND: The human immunodeficiency virus type 1 reverse-transcriptase mutation K65R is a single-point mutation that has become more frequent after increased use of tenofovir disoproxil fumarate (TDF). We aimed to identify predictors for the emergence of K65R, using clinical data and genotypic resistance tests from the Swiss HIV Cohort Study. METHODS: A total of 222 patients with genotypic resistance tests performed while receiving treatment with TDF-containing regimens were stratified by detectability of K65R (K65R group, 42 patients; undetected K65R group, 180 patients). Patient characteristics at start of that treatment were analyzed. RESULTS: In an adjusted logistic regression, TDF treatment with nonnucleoside reverse-transcriptase inhibitors and/or didanosine was associated with the emergence of K65R, whereas the presence of any of the thymidine analogue mutations D67N, K70R, T215F, or K219E/Q was protective. The previously undescribed mutational pattern K65R/G190S/Y181C was observed in 6 of 21 patients treated with efavirenz and TDF. Salvage therapy after TDF treatment was started for 36 patients with K65R and for 118 patients from the wild-type group. Proportions of patients attaining human immunodeficiency virus type 1 loads <50 copies/mL after 24 weeks of continuous treatment were similar for the K65R group (44.1%; 95% confidence interval, 27.2%-62.1%) and the wild-type group (51.9%; 95% confidence interval, 42.0%-61.6%). CONCLUSIONS: In settings where thymidine analogue mutations are less likely to be present, such as at start of first-line therapy or after extended treatment interruptions, combinations of TDF with other K65R-inducing components or with efavirenz or nevirapine may carry an enhanced risk of the emergence of K65R. The finding of a distinct mutational pattern selected by treatment with TDF and efavirenz suggests a potential fitness interaction between K65R and nonnucleoside reverse-transcriptase inhibitor-induced mutations.
Resumo:
Osteogenesis imperfecta (OI) is a hereditary disease occurring in humans and dogs. It is characterized by extremely fragile bones and teeth. Most human and some canine OI cases are caused by mutations in the COL1A1 and COL1A2 genes encoding the subunits of collagen I. Recently, mutations in the CRTAP and LEPRE1 genes were found to cause some rare forms of human OI. Many OI cases exist where the causative mutation has not yet been found. We investigated Dachshunds with an autosomal recessive form of OI. Genotyping only five affected dogs on the 50 k canine SNP chip allowed us to localize the causative mutation to a 5.82 Mb interval on chromosome 21 by homozygosity mapping. Haplotype analysis of five additional carriers narrowed the interval further down to 4.74 Mb. The SERPINH1 gene is located within this interval and encodes an essential chaperone involved in the correct folding of the collagen triple helix. Therefore, we considered SERPINH1 a positional and functional candidate gene and performed mutation analysis in affected and control Dachshunds. A missense mutation (c.977C>T, p.L326P) located in an evolutionary conserved domain was perfectly associated with the OI phenotype. We thus have identified a candidate causative mutation for OI in Dachshunds and identified a fifth OI gene.
Resumo:
We investigated if the MET-activating point mutation Y1253D influences clinical outcomes in patients with advanced squamous cell carcinoma of the head and neck (HNSCC). The study population consisted of 152 HNSCC patients treated by hyperfractionated radiotherapy alone or concomitant with chemotherapy between September 1994 and July 2000. Tumors were screened for the presence of the MET-activating point mutation Y1253D. Seventy-eight patients (51%) received radiotherapy alone, 74 patients (49%) underwent radiotherapy concomitant with chemotherapy. Median patient age was 54 years and median follow-up was 5.5 years. Distant metastasis-free survival, local relapse-free survival and overall survival were compared with MET Y1253D status. During follow-up, 29 (19%) patients developed distant metastasis. MET Y1253D was detected in tumors of 21 out of 152 patients (14%). Distant metastasis-free survival (P = 0.008) was associated with MET Y1253D. In a multivariate Cox regression model, adjusted for T-category, only presence of MET Y1253D was associated with decreased distant metastasis-free survival: hazard ratio = 2.5 (95% confidence interval: 1.1, 5.8). The observed association between MET Y1253D-activating point mutation and decreased distant metastasis-free survival in advanced HNSCC suggests that MET may be a potential target for specific treatment interventions.
Resumo:
Hereditary nasal parakeratosis (HNPK), an inherited monogenic autosomal recessive skin disorder, leads to crusts and fissures on the nasal planum of Labrador Retrievers. We performed a genome-wide association study (GWAS) using 13 HNPK cases and 23 controls. We obtained a single strong association signal on chromosome 2 (p(raw) = 4.4×10⁻¹⁴). The analysis of shared haplotypes among the 13 cases defined a critical interval of 1.6 Mb with 25 predicted genes. We re-sequenced the genome of one case at 38× coverage and detected 3 non-synonymous variants in the critical interval with respect to the reference genome assembly. We genotyped these variants in larger cohorts of dogs and only one was perfectly associated with the HNPK phenotype in a cohort of more than 500 dogs. This candidate causative variant is a missense variant in the SUV39H2 gene encoding a histone 3 lysine 9 (H3K9) methyltransferase, which mediates chromatin silencing. The variant c.972T>G is predicted to change an evolutionary conserved asparagine into a lysine in the catalytically active domain of the enzyme (p.N324K). We further studied the histopathological alterations in the epidermis in vivo. Our data suggest that the HNPK phenotype is not caused by hyperproliferation, but rather delayed terminal differentiation of keratinocytes. Thus, our data provide evidence that SUV39H2 is involved in the epigenetic regulation of keratinocyte differentiation ensuring proper stratification and tight sealing of the mammalian epidermis.
Resumo:
Imerslund-Gräsbeck syndrome (IGS) or selective cobalamin malabsorption has been described in humans and dogs. IGS occurs in Border Collies and is inherited as a monogenic autosomal recessive trait in this breed. Using 7 IGS cases and 7 non-affected controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 3.53 Mb interval on chromosome 2. We re-sequenced the genome of one affected dog at ∼10× coverage and detected 17 non-synonymous variants in the critical interval. Two of these non-synonymous variants were in the cubilin gene (CUBN), which is known to play an essential role in cobalamin uptake from the ileum. We tested these two CUBN variants for association with IGS in larger cohorts of dogs and found that only one of them was perfectly associated with the phenotype. This variant, a single base pair deletion (c.8392delC), is predicted to cause a frameshift and premature stop codon in the CUBN gene. The resulting mutant open reading frame is 821 codons shorter than the wildtype open reading frame (p.Q2798Rfs*3). Interestingly, we observed an additional nonsense mutation in the MRC1 gene encoding the mannose receptor, C type 1, which was in perfect linkage disequilibrium with the CUBN frameshift mutation. Based on our genetic data and the known role of CUBN for cobalamin uptake we conclude that the identified CUBN frameshift mutation is most likely causative for IGS in Border Collies.
Resumo:
We describe a mild form of disproportionate dwarfism in Labrador Retrievers, which is not associated with any obvious health problems such as secondary arthrosis. We designate this phenotype as skeletal dysplasia 2 (SD2). It is inherited as a monogenic autosomal recessive trait with incomplete penetrance primarily in working lines of the Labrador Retriever breed. Using 23 cases and 37 controls we mapped the causative mutation by genome-wide association and homozygosity mapping to a 4.44 Mb interval on chromosome 12. We re-sequenced the genome of one affected dog at 30x coverage and detected 92 non-synonymous variants in the critical interval. Only two of these variants, located in the lymphotoxin A (LTA) and collagen alpha-2(XI) chain gene (COL11A2), respectively, were perfectly associated with the trait. Previously described COL11A2 variants in humans or mice lead to skeletal dysplasias and/or deafness. The dog variant associated with disproportionate dwarfism, COL11A2:c.143G>C or p.R48P, probably has only a minor effect on collagen XI function, which might explain the comparatively mild phenotype seen in our study. The identification of this candidate causative mutation thus widens the known phenotypic spectrum of COL11A2 mutations. We speculate that non-pathogenic COL11A2 variants might even contribute to the heritable variation in height.
Resumo:
Highland cattle with congenital crop ears have notches of variable size on the tips of both ears. In some cases, cartilage deformation can be seen and occasionally the external ears are shortened. We collected 40 cases and 80 controls across Switzerland. Pedigree data analysis confirmed a monogenic autosomal dominant mode of inheritance with variable expressivity. All affected animals could be traced back to a single common ancestor. A genome-wide association study was performed and the causative mutation was mapped to a 4 Mb interval on bovine chromosome 6. The H6 family homeobox 1 (HMX1) gene was selected as a positional and functional candidate gene. By whole genome re-sequencing of an affected Highland cattle, we detected 6 non-synonymous coding sequence variants and two variants in an ultra-conserved element at the HMX1 locus with respect to the reference genome. Of these 8 variants, only a non-coding 76 bp genomic duplication (g.106720058_106720133dup) located in the conserved region was perfectly associated with crop ears. The identified copy number variation probably results in HMX1 misregulation and possible gain-of-function. Our findings confirm the role of HMX1 during the development of the external ear. As it is sometimes difficult to phenotypically diagnose Highland cattle with slight ear notches, genetic testing can now be used to improve selection against this undesired trait.
Resumo:
In sheep, small ruminant lentiviruses cause an incurable, progressive, lymphoproliferative disease that affects millions of animals worldwide. Known as ovine progressive pneumonia virus (OPPV) in the U.S., and Visna/Maedi virus (VMV) elsewhere, these viruses reduce an animal's health, productivity, and lifespan. Genetic variation in the ovine transmembrane protein 154 gene (TMEM154) has been previously associated with OPPV infection in U.S. sheep. Sheep with the ancestral TMEM154 haplotype encoding glutamate (E) at position 35, and either form of an N70I variant, were highly-susceptible compared to sheep homozygous for the K35 missense mutation. Our current overall aim was to characterize TMEM154 in sheep from around the world to develop an efficient genetic test for reduced susceptibility. The average frequency of TMEM154 E35 among 74 breeds was 0.51 and indicated that highly-susceptible alleles were present in most breeds around the world. Analysis of whole genome sequences from an international panel of 75 sheep revealed more than 1,300 previously unreported polymorphisms in a 62 kb region containing TMEM154 and confirmed that the most susceptible haplotypes were distributed worldwide. Novel missense mutations were discovered in the signal peptide (A13V) and the extracellular domains (E31Q, I74F, and I102T) of TMEM154. A matrix-assisted laser desorption/ionization-time-of flight mass spectrometry (MALDI-TOF MS) assay was developed to detect these and six previously reported missense and two deletion mutations in TMEM154. In blinded trials, the call rate for the eight most common coding polymorphisms was 99.4% for 499 sheep tested and 96.0% of the animals were assigned paired TMEM154 haplotypes (i.e., diplotypes). The widespread distribution of highly-susceptible TMEM154 alleles suggests that genetic testing and selection may improve the health and productivity of infected flocks.
Resumo:
Reliable detection of JAK2-V617F is critical for accurate diagnosis of myeloproliferative neoplasms (MPNs); in addition, sensitive mutation-specific assays can be applied to monitor disease response. However, there has been no consistent approach to JAK2-V617F detection, with assays varying markedly in performance, affecting clinical utility. Therefore, we established a network of 12 laboratories from seven countries to systematically evaluate nine different DNA-based quantitative PCR (qPCR) assays, including those in widespread clinical use. Seven quality control rounds involving over 21,500 qPCR reactions were undertaken using centrally distributed cell line dilutions and plasmid controls. The two best-performing assays were tested on normal blood samples (n=100) to evaluate assay specificity, followed by analysis of serial samples from 28 patients transplanted for JAK2-V617F-positive disease. The most sensitive assay, which performed consistently across a range of qPCR platforms, predicted outcome following transplant, with the mutant allele detected a median of 22 weeks (range 6-85 weeks) before relapse. Four of seven patients achieved molecular remission following donor lymphocyte infusion, indicative of a graft vs MPN effect. This study has established a robust, reliable assay for sensitive JAK2-V617F detection, suitable for assessing response in clinical trials, predicting outcome and guiding management of patients undergoing allogeneic transplant.
Resumo:
Hereditary breast and ovarian cancer (HBOC) is caused by a mutation in the BRCA1 or BRCA2 genes. Women with a BRCA1/2 mutation are at increased risks for breast and ovarian cancer and often develop cancer at an earlier age than the general population. However, some women with a BRCA1/2 mutation do not develop breast or ovarian cancer under the age of 50 years. There have been no specific studies on BRCA positive women with no cancer prior to age 50, therefore this study sought to investigate factors within these women with no cancer under age 50 with respect to reproductive risk factors, BMI, tumor pathology, screening history, risk-reducing surgeries, and family history. 241 women were diagnosed with cancer prior to age 50, 92 with cancer at age 50 or older, and 20 women were over age 50 with no cancer. Data were stratified based on BRCA1 and BRCA2 mutation status. Within the cohorts we investigated differences between women who developed cancer prior to age 50 and those who developed cancer at age 50 or older. We also investigated the differences between women who developed cancer at age 50 or older and those who were age 50 or older with no cancer. Of the 92 women with a BRCA1/2 mutation who developed cancer at age 50 or older, 46 developed ovarian cancer first, 45 developed breast cancer, and one had breast and ovarian cancer diagnosed synchronously. BRCA2 carriers diagnosed age 50 or older were more likely to have ER/PR negative breast tumors when compared to BRCA2 carriers who were diagnosed before age 50. This is consistent with one other study that has been performed. Ashkenazi Jewish women with a BRCA1 mutation were more likely to be diagnosed age 50 or older than other ethnicities. Hispanic women with a BRCA2 mutation were more likely to be diagnosed prior to age 50 when compared to other ethnicities. No differences in reproductive factors or BMI were observed. Further characterization of BRCA positive women with no cancer prior to age 50 may aid in finding factors important in the development of breast or ovarian cancer.
Resumo:
The Mendelian inheritance of genetic mutations can lead to adult-onset cardiovascular disease. Several genetic loci have been mapped for the familial form of Thoracic Aortic Aneurysms (TAA), and many causal mutations have been identified for this disease. Intracranial Aneurysms (ICA) also show linkage heterogeneity, but no mutations have been identified causing familial ICA alone. Here, we characterized a large family (TAA288) with an autosomal dominant pattern of inherited aneurysms. It is intriguing that female patients predominantly present with ICA and male patients predominantly with TAA in this family. To identify a causal mutation in this family, a genome-wide linkage analysis was previously performed on nine members of this family using the 50k GenChips Hind array from Affymetrix. This analysis eventually identified a single disease-segregating locus, on chromosome 5p15. We build upon this previous analysis in this study, hypothesizing that a genetic mutation inherited in this locus leads to the sex-specific phenotype of TAA and ICA in this family First we refined the boundaries of the 5p15 disease linked locus down to the genomic coordinates 5p15: 3,424,465- 6,312,925 (GRCh37/hg19 Assembly). This locus was named the TAA288 critical interval. Next, we sequenced candidate genes within the TAA288 critical interval. The selection of genes was simplified by the relatively small number of well-characterized genetic elements within the region. Seeking novel or rare disease-segregating variants, we initially observed a single point alteration in the metalloproteinase gene ADAMTS16 fulfilling this criteria. This variant was later classified as a low-frequency population polymorphism (rs72647757), but we continued to explore the potential role of the ADAMTS16 as the cause of disease in TAA288. We observed that fibroblasts cultured from TAA288 patients consistently upregulated the expression of this gene more strongly compared to matched control fibroblasts when treated with the cytokine TGF-β1, though there was some variation in the exact nature of this expression. We also observed evidence that this protein is expressed at elevated levels in aortic aneurysm tissue from patients with mutations in the gene TGFBR2 and Marfan syndrome, shown by immunohistochemical detection of this protein.