898 resultados para Awake rats
Resumo:
Evidence suggests that in some species (cats, rabbits, and possibly humans) alpha-adrenoceptors in the iris dilator muscle are "atypical" in that they cannot be readily classified by conventional criteria. This study was undertaken in an attempt to characterize the alpha-adrenoceptor subtype(s) mediating sympathetically elicited mydriasis in rats. Frequency-response pupillary dilator curves were generated by stimulation of the preganglionic cervical sympathetic nerve (1-32 Hz) in pentobarbital-anesthetized rats. Evoked responses were inhibited by systemic administration of nonselective alpha-adrenergic antagonists, phentolamine (0.3-10 mg/kg) and phenoxybenzamine (0.03-1 mg/kg). The selective alpha(1)-adrenergic antagonist, prazosin (0.01-1 mg/kg), also was effective, although alpha(2)-adrenergic antagonism with rauwolscine (0.1-1 mg/kg) was not. alpha(1A)-Adrenoceptor-selective antagonists, 2-([2,6-dimethoxyphenoxyethyl]aminomethyl)-1,4-benzodioxane (WB-4101; 0.1-1 mg/kg) and 5-methylurapidil (0.1-1 mg/kg), as well as the alpha(1D)-adrenoceptor-selective antagonist 8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5]decane-7,9-dione (BMY-7378; 1-3 mg/kg), were used to determine the subtype(s) involved. Evoked mydriasis was significantly antagonized by both WB-4101 and 5-methylurapidil but not by BMY-7378. These results suggest that, unlike some other species, adrenoceptors in the rat iris dilator mediating neurogenic mydriasis are "typical" and, in addition, can be characterized as being primarily of the alpha(1A)-adrenoceptor subtype.
Resumo:
This study was designed to determine if the histamine H3 receptor agonist R-alpha-methylhistamine would play a role in modulation of sympathetically evoked mydriasis in anesthetized rats, and if so, to ascertain the specific receptor subtype(s) involved. Reproducible frequency-response curves of pupillary dilation were generated by stimulation of the cervical preganglionic sympathetic nerve (1-32 Hz). Systemic administration of R-alpha-methylhistamine (0.3-3.0 mg kg(-1)) produced a dose-related inhibition of the evoked mydriasis. The greatest inhibition was seen at lower frequency levels, with about 43% depression observed at 2 Hz. The specific histamine H3 receptor antagonist, clobenpropit (3.0 mg kg(-1), i.v.), blocked the inhibitory effect of R-alpha-methylhistamine, whereas neither the histamine H2 receptor antagonist, cimetidine (5.0 mg kg(-1), i.v.), nor the histamine H1 receptor antagonist, chlorpheniramine (0.5 mg kg(-1), i.v.), was effective. The histamine H2 receptor agonist, dimaprit (10 mg kg(-1), i.v.), was also without effect on the evoked mydriasis. R-alpha-methylhistamine (3.0 mg kg(-1)) did not inhibit phenylephrine-induced mydriasis. These results support the conclusion that R-alpha-methylhistamine produces inhibition of sympathetically evoked mydriasis via histamine H3 receptor stimulation, presumably by an action on presynaptic histamine H3 receptors.
Resumo:
Purpose: To determine relationship between the magnitude of intraocular pressure (IOP) during a fixed-duration episode of acute elevation and the loss of retinal function and structure 4 weeks later in rats.
Methods: Unilateral elevation of IOP (105 minutes) was achieved manometrically in adult Brown Norway rats (9 groups; n = 4 to 8 each, 10–100 mm Hg and sham control). Full-field ERGs were recorded simultaneously from treated and control eyes 4 weeks after IOP elevation. Scotopic ERG stimuli were white flashes (26.04 to 2.72 log cd.s.m^-2). Photopic ERGs were recorded (1.22 to 2.72 log cd.s.m22) after 15 min of light adaptation (150 cd/m2). Relative amplitude (treated/control, %) of ERG components versus IOP was described with a cummulative normal function. Retinal ganglion cell (RGC) layer density was determined post mortem by histology.
Results: All ERG components failed to recover completely normal amplitudes by 4 weeks after the insult if IOP was 70 mmHg or greater during the episode. There was no ERG recovery at all if IOP was 100 mmHg. Outer retinal (photoreceptor) function demonstrated the least sensitivity to prior acute IOP elevation. ERG components reflecting inner retinal function were correlated with post mortem RGC layer density.
Conclusions: Retinal function recovers after IOP normalization, such that it requires a level of acute IOP elevation approximately 10 mmHg higher to cause a pattern of permanent dysfunction similar to that observed during the acute event. There is a ‘threshold’ for permanent retinal functional loss in the rat at an IOP between 60 and 70 mmHg if sustained for 105 minutes or more.
Resumo:
Neuronal dysfunction has been noted very soon after the induction of diabetes by streptozotocin injection in rats. It is not clear from anatomical evidence whether glial cell dysfunction accompanies the well-documented neuronal deficit. Here, we isolate the Müller cell driven slow-P3 component of the full-field electroretinogram and show that it is attenuated at 4 weeks following the onset of streptozotocin-hyperglycaemia. We also found a concurrent reduction in the sensitivity of the phototransduction cascade, as well as in the components of the electroretinogram known to indicate retinal ganglion cell and amacrine cell integrity. Our data support the idea that neuronal and Müller cell dysfunction occurs at the same time in streptozotocin-induced hyperglycaemia.
Resumo:
Alcohol-induced liver injury is the most common liver disease in which fatty acid metabolism is altered. It is thought that altered NAD+/NADH redox potential by alcohol in the liver causes fatty liver by inhibiting fatty acid oxidation and the activity of tricarboxylic acid cycle reactions. β-Lapachone (βL), a naturally occurring quinone, has been shown to stimulate fatty acid oxidation in an obese mouse model by activating adenosine monophosphate-activated protein kinase (AMPK). In this report, we clearly show that βL reduced alcohol-induced hepatic steatosis and induced fatty acid oxidizing capacity in ethanol-fed rats. βL treatment markedly decreased hepatic lipids while serum levels of lipids and lipoproteins were increased in rats fed ethanol-containing liquid diets with βL administration. Furthermore, inhibition of lipolysis, enhancement of lipid mobilization to mitochondria and upregulation of mitochondrial β-oxidation activity in the soleus muscle were observed in ethanol/βL-treated animals compared to the ethanol-fed rats. In addition, the activity of alcohol dehydrogenase, but not aldehyde dehydrogenase, was significantly increased in rats fed βL diets. βL-mediated modulation of NAD+/NADH ratio led to the activation of AMPK signaling in these animals. Conclusion: Our results suggest that improvement of fatty liver by βL administration is mediated by the upregulation of apoB100 synthesis and lipid mobilization from the liver as well as the direct involvement of βL on NAD+/NADH ratio changes, resulting in the activation of AMPK signaling and PPARα-mediated β-oxidation. Therefore, βL-mediated alteration of NAD+/NADH redox potential may be of potential therapeutic benefit in the clinical setting.
Resumo:
The present study examined the effects of administering selective 5-HT antagonists and agonists to rats tested in the elevated zero-maze (EZM) model of anxiety. The EZM paradigm has advantages over the elevated plus-maze (EPM) paradigm with respect to measuring anxiety, yet has been utilized less frequently. Three experiments were conducted each with a diazepam control (0.25, 0.5 and 0.75 mg/kg). In the first experiment, we administered the 5-HT2C antagonist RS 102221 (0.5, 1.0, and 2.0 mg/kg) and 5-HT2C agonist MK-212 (0.25, 0.5 and 0.75 mg/kg); in the second experiment, we administered the 5-HT3 antagonist Y-25130 (0.1, 1.0 and 3.0 mg/kg) and 5-HT3 agonist SR 57227A (0.1, 1.0 and 3.0 mg/kg), and in the third experiment, we administered the 5-HT4 antagonist RS 39604 (0.01, 0.1, 1.0 mg/kg) and 5-HT4 agonist RS 67333 (0.01, 0.1 and 0.5 mg/kg). The administration of 5-HT2/3/4 subtype antagonists all generated behavioral profiles indicative of anxiolytic-like effects in the EZM, which was apparent from examination of both traditional and ethological measures. While little effect was observed from 5-HT2 and 5-HT3 agonists, the 5-HT4 agonist RS 67333 was found to produce a paradoxical anxiolytic-like effect similar to that produced by the 5-HT4 antagonist RS 39604. We conclude by discussing the implications of these findings.
Resumo:
Objective: Enhanced oxidative stress is involved in mediating the endothelial dysfunction associated with hypertension. The aim of this study was to investigate the relative contributions of pro-oxidant and anti-oxidant enzymes to the pathogenesis of endothelial dysfunction in genetic hypertension. Methods: Dilator responses to endothelium-dependent and endothelium-independent agents such as acetylcholine (ACh) and sodium nitroprusside were measured in the thoracic aortas of 28-week-old spontaneously hypertensive rats (SHR) and their matched normotensive counterparts, Wistar Kyoto rats (WKY). The activity and expression (mRNA and protein levels) of endothelial nitric oxide synthase (eNOS), p22-phox, a membrane-bound component of NAD(P)H oxidase, and antioxidant enzymes, namely, superoxide dismutases (CuZn- and Mn-SOD), catalase and glutathione peroxidase (GPx), were also investigated in aortic rings. Results: Relaxant responses to ACh were attenuated in phenylephrine-precontracted SHR aortic rings, despite a 2-fold increase in eNOS expression and activity. Although the activity and/or expression of SODs, NAD(P)H oxidase (p22-phox) and GPx were elevated in SHR aorta, catalase activity and expression remained unchanged compared to WKY. Pretreatment of SHR aortic rings with the inhibitor of xanthine oxidase, allopurinol, and the inhibitor of cyclooxygenase, indomethacin, significantly potentiated ACh-induced relaxation. Pretreatment of SHR rings with catalase and Tiron, a superoxide anion (O) scavenger, increased the relaxant responses to the levels observed in WKY rings whereas pyrogallol, a O -generator, abolished relaxant responses to ACh. Conclusion: These data demonstrate that dysregulation of several enzymes, resulting in oxidative stress, contributes to the pathogenesis of endothelial dysfunction in SHR and indicate that the antioxidant enzyme catalase is of particular importance in the reversal of this defect. © 2003 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.