950 resultados para Autosomal dominant polycystic kidney disease


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A doença de Machado-Joseph (DMJ) ou ataxia espinocerebelosa do tipo 3 (SCA3), conhecida por ser a mais comum das ataxias hereditárias dominantes em todo o mundo, é uma doença neurodegenerativa autossómica dominante que leva a uma grande incapacidade motora, embora sem alterar o intelecto, culminando com a morte do doente. Atualmente não existe nenhum tratamento eficaz para esta doença. A DMJ é resultado de uma alteração genética causada pela expansão de uma sequência poliglutamínica (poliQ), na região C-terminal do gene que codifica a proteína ataxina-3 (ATXN3). Os mecanismos celulares das doenças de poliglutaminas que provocam toxicidade, bem como a função da ATXN3, não são ainda totalmente conhecidos. Neste trabalho, usamos, pela sua simplicidade e potencial genético, um pequeno animal invertebrado, o nemátode C. elegans, com o objetivo de identificar fármacos eficazes para o combate contra a patogénese da DMJ, analisando simultaneamente o seu efeito na agregação da ATXN3 mutante nas células neuronais in vivo e o seu impacto no comportamento motor dos animais. Este pequeno invertebrado proporciona grandes vantagens no estudo dos efeitos tóxicos de proteínas poliQ nos neurónios, uma vez que a transparência das suas 959 células (das quais 302 são neurónios) facilita a deteção de proteínas fluorescentes in vivo. Para além disso, esta espécie tem um ciclo de vida curto, é económica e de fácil manutenção. Neste trabalho testámos no nosso modelo transgénico da DMJ com 130Qs em C.elegans dois compostos potencialmente moduladores da agregação da ATXN3 mutante e da resultante disfunção neurológica, atuando pela via da autofagia. De modo a validar a possível importância terapêutica da ativação da autofagia os compostos candidatos escolhidos foram o Litío e o análogo da Rapamicina CCI-779, testados independentemente e em combinação. A neuroproteção conferida pelo Litío e pelo CCI-779 independentemente sugere que o uso destes fármacos possa ser considerado uma boa estratégia como terapia para a DMJ, a testar em organismos evolutivamente mais próximos do humano. A manipulação da autofagia, segundo vários autores, parece ser benéfica e pode ser a chave para o desenvolvimento de novos tratamentos para várias doenças relacionadas com a agregação proteica e o envelhecimento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Renal biopsy plays an essential role either in the diagnosis or in the prognosis of patients with renal disease. In order to assess its epidemiology and evolution in Madeira Islands, we analysed twenty-seven years of native kidney biopsies. Methods: We performed a retrospective analysis of clinical records, including histological revision from 1986 to 2012, totalling 315 native kidney biopsies. They were assessed regarding the temporal evolution both for the quality/indications for renal biopsy and for the patterns of kidney disease. Results: A total of 315 native kidney biopsies were analysed. The patients’ mean age was of 40.8 ± 18.4 years and 50.5%(n = 159) were males. The most common indications for renal biopsy were nephrotic syndrome (36.2%, n = 114) and acute kidney injury (20.0%, n = 63). Among primary glomerular diseases (41.5%, n = 115) the most common were IgA nephropathy (26.1%, n = 30) and focal-segmental glomerulosclerosis (17.4%, n = 20) and among secondary glomerular diseases (31.4%, n = 87), lupus nephritis (51.7%, n = 45) and amyloidosis (20.7%, n = 18). Statistical analysis revealed significant correlation between gender and major pathological diagnosis (Fisher’s exact test, p <.01) and between indications for renal biopsy and major pathological diagnosis (χ2, p <.01). Regarding the temporal evolution, no statistically significant differences were found in the number of renal biopsies (χ2, p =.193), number of glomeruli per sample (Fisher’s exact test, p =.669), age (Kruskal-Wallis, p =.216), indications for renal biopsy (χ2, p =.106) or major pathological diagnosis groups (χ2,p =.649). However, considering the specific clinico-pathological diagnoses and their temporal variation, a statistically significant difference (Fisher’s exact test, p <.05) was found for lupus nephritis and membranous nephropathy with an increasing incidence and for amyloidosis with an opposite tendency. Discussion: The review of the native kidney biopsies from a population with particular characteristics, geographically isolated, such as those from Madeira Islands, showed parallel between epidemiological numbers referring to other European subpopulations, allowing simultaneously a comprehensive approach to our renal biopsy policies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências da Saúde

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT : The retina is one of the most important human sensory tissues since it detects and transmits all visual information from the outside world to the brain. Retinitis pigmentosa (RP) is the name given to a group of inherited diseases that affect specifically the photoreceptors present in the retina and in many instances lead to blindness. Dominant mutations in PRPF31, a gene that encodes for a pre-mRNA splicing factor, cause retinitis pigmentosa with reduced penetrance. We functionally investigated a novel mutation, identified in a large family with autosomal dominant RP, and 7 other mutations, substitutions and microdeletions, in 12 patients from 7 families with PRPF31-linked RP. Seven mutations lead to PRPF31 mRNA with premature stop codons and one to mRNA lacking the exon containing the initiation codon. Quantification of PRPF31 mRNA and protein levels revealed a significant reduction in cell lines derived from patients, compared to non carriers of mutations in PRPF31. Allelic quantification of PRPF31 mRNA indicated that the level of mutated mRNA is very low compared to wild-type mRNA. No mutant protein was detected and the subnuclear localization of wild-type PRPF31 remains the same in cell lines from patients and controls. Blocking nonsense-mediated mRNA decay in cell lines derived from patients partially restored PRPF31 mutated mRNA but derived proteins were still undetectable, even when protein degradation pathways were inhibited. Our results demonstrated that the vast majority of PRPF31 mutations result in null alleles, since they are subject to surveillance mechanisms that degrade mutated mRNA and possibly block its translation. Altogether, these data indicate that the likely cause of PRPF31-linked RP is haploinsufficiency, rather than a dominant negative effect. Penetrance of PRPF31 mutations has been previously demonstrated to be inversely correlated with the level of PRPF31 mRNA, since high expression of wild-type PRPF31 mRNA protects from the disease. Consequently, we have investigated the genetic modifiers that control the expression of PRPF31 by quantifying PRPF31 mRNA levels in cell lines derived from 200 individuals from 15 families representative of the general population. By linkage analyses we identified a 8.2Mb-region on chromosome 14q21-23 that contains a gene involved in the modulation of PRPF31 expression. We also assessed apreviously-mapped penetrance factor invariably located on the wild-type allele and linked to the PRPF31 locus in asymptomatic patients from different families with RP. We demonstrated that this modifier increases the expression of both PRPF31 alleles already at the pre-mRNA level. Finally, our data suggest that PRPF31 mRNA expression and consequently the penetrance of PRPF31 mutations is modulated by at least 2 diffusible compounds, which act on both PRPF31 alleles during their transcription.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cataracts are the leading cause of blindness in most countries. Although most hereditary cases appear to follow an autosomal dominant pattern of inheritance, autosomal recessive inheritance has been clearly documented and is probably underrecognized. We studied a large family-from a relatively isolated geographic region-whose members were affected by autosomal recessive adult-onset pulverulent cataracts. We mapped the disease locus to a 14-cM interval at a novel disease locus, 9q13-q22 (between markers D9S1123 and D9S257), with a LOD score of 4.7. The study of this progressive and age-related cataract phenotype may provide insight into the cause of the more common sporadic form of age-related cataracts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hailey-Hailey disease (HHD) is an autosomal dominant disorder characterized by suprabasal cutaneous cell separation (acantholysis) leading to the development of erosive and oozing skin lesion. Micro RNAs (miRNAs) are endogenous post-transcriptional modulators of gene expression with critical functions in health and disease. Here, we evaluated whether the expression of specific miRNAs may play a role in the pathogenesis of HHD. Here, we report that miRNAs are expressed in a non-random manner in Hailey-Hailey patients. miR-125b appeared a promising candidate for playing a role in HHD manifestation. Both Notch1 and p63 are part of a regulatory signalling whose function is essential for the control of keratinocyte proliferation and differentiation and of note, the expression of both Notch1 and p63 is downregulated in HHD-derived keratinocytes. We found that both Notch1 and p63 expression is strongly suppressed by miR-125b expression. Additionally, we found that miR-125b expression is increased by an oxidative stress-dependent mechanism. Our data suggest that oxidative stress-mediated induction of miR-125b plays a specific role in the pathogenesis of HHD by regulating the expression of factors playing an important role in keratinocyte proliferation and differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: Primary pigmented nodular adrenocortical disease (PPNAD), a rare cause of corticotropin-independent Cushing syndrome, can be part of Carney complex (CNC), an autosomal dominant multiple neoplasia syndrome characterized by spotty skin pigmentation, cardiac myxomas, and endocrine tumors or be isolated (i). Germline PRKAR1A-inactivating mutations have been observed in both CNC and iPPNAD, but with no apparent genotype-phenotype correlation. OBJECTIVE:The objectives of the study were a detailed phenotyping for CNC manifestations in 12 kindreds bearing the same PRKAR1A mutation and a study of the consequences of the mutation and a potential founder effect. DESIGN: The study consisted of descriptive case reports. SETTING: The study was conducted at two referral centers. PATIENTS: The patients described in this study were referred for PRKAR1A gene mutation analysis because of a diagnosis of apparently iPPNAD. RESULTS: We describe a 6-bp polypyrimidine tract deletion [exon 7 IVS del (-7-->-2)] in 12 unrelated kindreds that were referred for Cushing syndrome due to PPNAD. Nine of the patients had no family history; in two, there was a family history of iPPNAD. Only one patient met the criteria for CNC. Relatives carrying the same mutation had no manifestations of CNC or PPNAD, suggesting a low penetrance of this PRKAR1A defect. A founder effect was excluded by extensive genotyping of chromosome 17 markers. CONCLUSIONS: In conclusion, a small intronic deletion of the PRKAR1A gene is a low-penetrance cause of mainly iPPNAD; it is the first PRKAR1A genetic defect to have an association with a specific phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal recessive tubular disorder characterized by excessive renal magnesium and calcium excretion and chronic kidney failure. This rare disease is caused by mutations in the CLDN16 and CLDN19 genes. These genes encode the tight junction proteins claudin-16 and claudin-19, respectively, which regulate the paracellular ion reabsorption in the kidney. Patients with mutations in the CLDN19 gene also present severe visual impairment. Our goals in this study were to examine the clinical characteristics of a large cohort of Spanish patients with this disorder and to identify the disease causing mutations. We included a total of 31 patients belonging to 27 unrelated families and studied renal and ocular manifestations. We then analyzed by direct DNA sequencing the coding regions of CLDN16 and CLDN19 genes in these patients. Bioinformatic tools were used to predict the consequences of mutations. Clinical evaluation showed ocular defects in 87% of patients, including mainly myopia, nystagmus and macular colobomata. Twenty two percent of patients underwent renal transplantation and impaired renal function was observed in another 61% of patients. Results of the genetic analysis revealed CLDN19 mutations in all patients confirming the clinical diagnosis. The majority of patients exhibited the previously described p.G20D mutation. Haplotype analysis using three microsatellite markers showed a founder effect for this recurrent mutation in our cohort. We also identified four new pathogenic mutations in CLDN19, p.G122R, p.I41T, p.G75C and p.G75S. A strategy based on microsequencing was designed to facilitate the genetic diagnosis of this disease. Our data indicate that patients with CLDN19 mutations have a high risk of progression to chronic renal disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in PRPF31 are responsible for autosomal dominant retinitis pigmentosa (adRP, RP11 form) and affected families show nonpenetrance. Differential expression of the wildtype PRPF31 allele is responsible for this phenomenon: coinheritance of a mutation and a higher expressing wildtype allele provide protection against development of disease. It has been suggested that a major modulating factor lies in close proximity to the wildtype PRPF31 gene on Chromosome 19, implying that a cis-acting factor directly alters PRPF31 expression. Variable expression of CNOT3 is one determinant of PRPF31 expression. This study explored the relationship between CNOT3 (a trans-acting factor) and its paradoxical cis-acting nature in relation to RP11. Linkage analysis on Chromosome 19 was performed in mutation-carrying families, and the inheritance of the wildtype PRPF31 allele in symptomatic-asymptomatic sibships was assessed-confirming that differential inheritance of wildtype chromosome 19q13 determines the clinical phenotype (P < 2.6 × 10(-7) ). A theoretical model was constructed that explains the apparent conflict between the linkage data and the recent demonstration that a trans-acting factor (CNOT3) is a major nonpenetrance factor: we propose that this apparently cis-acting effect arises due to the intimate linkage of CNOT3 and PRPF31 on Chromosome 19q13-a novel mechanism that we have termed "linked trans-acting epistasis."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose:We analyzed the transcriptional activity of disease-causing NR2E3 mutant proteins in a heterologous system. NR2E3 belongs to the nuclear receptor superfamily of transcription factors, characterized by evolutionary-conserved DNA-binding (DBD) and ligand-binding (LBD) domains. NR2E3 acts in concert with the transcription factors CRX and NRL to repress cone-specific genes and activate rod-specific genes in rod photoreceptors. During development, NR2E3 is also required to suppress cone cell generation from retinal progenitor cells. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS), the Goldman-Favre syndrome, and, more recently, with autosomal dominant retinitis pigmentosa (adRP). Methods:The different NR2E3 mutants were generated by QuickChangeR mutagenesis and analyzed by transfection in heterologous HEK293T cells. Results:In transactivation assays in HEK293T cells, the adRP-linked p.G56R mutant protein exhibited a more severe effect both in activation of a rhodopsin promoter reporter construct and in repression of M-opsin promoter reporter construct, than the ESCS-linked R76Q, R76W, G88V, R97H, R104Q, R104W mutants of the DBD. In contrast, the ESCS-linked p.R311Q mutant of the LBD behaved like the NR2E3 wild-type protein in these assays. By co-expressing the corepressors atrophin-1 and -2, a differential repression of the M-opsin promoter was observed in presence of the p.R311Q, p.R385P and p.M407K. Interestingly, corepressor expression also affected the activity of CRX, but not NRL, in both rhodopsin and M-opsin transactivation assays. Conclusions:Taken together, these in vitro results suggest a distinct disease mechanism for the adRP-linked mutation, but open the possibility of different mechanisms for the development of ESCS that is clinically characterized by important phenotypic variations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metachondromatosis (MC) is a rare, autosomal dominant, incompletely penetrant combined exostosis and enchondromatosis tumor syndrome. MC is clinically distinct from other multiple exostosis or multiple enchondromatosis syndromes and is unlinked to EXT1 and EXT2, the genes responsible for autosomal dominant multiple osteochondromas (MO). To identify a gene for MC, we performed linkage analysis with high-density SNP arrays in a single family, used a targeted array to capture exons and promoter sequences from the linked interval in 16 participants from 11 MC families, and sequenced the captured DNA using high-throughput parallel sequencing technologies. DNA capture and parallel sequencing identified heterozygous putative loss-of-function mutations in PTPN11 in 4 of the 11 families. Sanger sequence analysis of PTPN11 coding regions in a total of 17 MC families identified mutations in 10 of them (5 frameshift, 2 nonsense, and 3 splice-site mutations). Copy number analysis of sequencing reads from a second targeted capture that included the entire PTPN11 gene identified an additional family with a 15 kb deletion spanning exon 7 of PTPN11. Microdissected MC lesions from two patients with PTPN11 mutations demonstrated loss-of-heterozygosity for the wild-type allele. We next sequenced PTPN11 in DNA samples from 54 patients with the multiple enchondromatosis disorders Ollier disease or Maffucci syndrome, but found no coding sequence PTPN11 mutations. We conclude that heterozygous loss-of-function mutations in PTPN11 are a frequent cause of MC, that lesions in patients with MC appear to arise following a "second hit," that MC may be locus heterogeneous since 1 familial and 5 sporadically occurring cases lacked obvious disease-causing PTPN11 mutations, and that PTPN11 mutations are not a common cause of Ollier disease or Maffucci syndrome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: The SCN5A gene encodes for the α-subunit of the cardiac sodium channel NaV1.5, which is responsible for the rapid upstroke of the cardiac action potential. Mutations in this gene may lead to multiple life-threatening disorders of cardiac rhythm or are linked to structural cardiac defects. Here, we characterized a large family with a mutation in SCN5A presenting with an atrioventricular conduction disease and absence of Brugada syndrome. METHOD AND RESULTS: In a large family with a high incidence of sudden cardiac deaths, a heterozygous SCN5A mutation (p.1493delK) with an autosomal dominant inheritance has been identified. Mutation carriers were devoid of any cardiac structural changes. Typical ECG findings were an increased P-wave duration, an AV-block I° and a prolonged QRS duration with an intraventricular conduction delay and no signs for Brugada syndrome. HEK293 cells transfected with 1493delK showed strongly (5-fold) reduced Na(+) currents with altered inactivation kinetics compared to wild-type channels. Immunocytochemical staining demonstrated strongly decreased expression of SCN5A 1493delK in the sarcolemma consistent with an intracellular trafficking defect and thereby a loss-of-function. In addition, SCN5A 1493delK channels that reached cell membrane showed gain-of-function aspects (slowing of the fast inactivation, reduction in the relative fraction of channels that fast inactivate, hastening of the recovery from inactivation). CONCLUSION: In a large family, congregation of a heterozygous SCN5A gene mutation (p.1493delK) predisposes for conduction slowing without evidence for Brugada syndrome due to a predominantly trafficking defect that reduces Na(+) current and depolarization force.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is a progressive white matter disease with a wide range of clinical symptoms including dementia, behavioral changes, seizures, pyramidal signs, ataxia, and parkinsonism.(1-3) Affected individuals develop symptoms in their early 40s with an average survival time of 10 years. HDLS is inherited as an autosomal dominant trait. Recently, mutations in the colony-stimulating factor 1 receptor gene (CSF-1R) were identified as the genetic cause of HDLS.(4) White matter lesions, easily demonstrated on MRI studies, involve predominantly the frontal lobes and corpus callosum with subsequent cortical atrophy. MRI abnormalities are present prior to symptom onset.(5,6) Histopathology shows widespread myelin and axon destruction with axonal dilations termed spheroids, as well as pigmented macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The known genetic mutation causing Huntington's disease (HD) makes this disease an important model to study links between gene and brain function. An autosomal dominant family history and the availability of a sensitive and specific genetic test allow pre-clinical diagnosis many years before the onset of any typical clinical signs. This review summarizes recent magnetic resonance imaging (MRI)-based findings in HD with a focus on the requirements if imaging is to be used in treatment trials. Despite its monogenetic cause, HD presents with a range of clinical manifestations, not explained by variation in the number of CAG repeats in the affected population. Neuroimaging studies have revealed a complex pattern of structural and functional changes affecting widespread cortical and subcortical regions far beyond the confines of the striatal degeneration that characterizes this disorder. Besides striatal dysfunction, functional imaging studies have reported a variable pattern of increased and decreased activation in cortical regions in both pre-clinical and clinically manifest HD-gene mutation carriers. Beyond regional brain activation changes, evidence from functional and diffusion-weighted MRI further suggests disrupted connectivity between corticocortical and corticostriatal areas. However, substantial inconsistencies with respect to structural and functional changes have been reported in a number of studies. Possible explanations include methodological factors and differences in study samples. There may also be biological explanations but these are poorly characterized and understood at present. Additional insights into this phenotypic variability derived from study of mouse models are presented to explore this phenomenon.