949 resultados para Autonomous Mobile Robot
Resumo:
This paper presents a novel technique to align partial 3D reconstructions of the seabed acquired by a stereo camera mounted on an autonomous underwater vehicle. Vehicle localization and seabed mapping is performed simultaneously by means of an Extended Kalman Filter. Passive landmarks are detected on the images and characterized considering 2D and 3D features. Landmarks are re-observed while the robot is navigating and data association becomes easier but robust. Once the survey is completed, vehicle trajectory is smoothed by a Rauch-Tung-Striebel filter obtaining an even better alignment of the 3D views and yet a large-scale acquisition of the seabed
Resumo:
Robotic platforms have advanced greatly in terms of their remote sensing capabilities, including obtaining optical information using cameras. Alongside these advances, visual mapping has become a very active research area, which facilitates the mapping of areas inaccessible to humans. This requires the efficient processing of data to increase the final mosaic quality and computational efficiency. In this paper, we propose an efficient image mosaicing algorithm for large area visual mapping in underwater environments using multiple underwater robots. Our method identifies overlapping image pairs in the trajectories carried out by the different robots during the topology estimation process, being this a cornerstone for efficiently mapping large areas of the seafloor. We present comparative results based on challenging real underwater datasets, which simulated multi-robot mapping
Resumo:
This paper presents a new strategy to control an one-legged robot aiming to reduce the energy expended by the system. To validate this algorithm, a classic method as benchmark was used. This method has been extensively validated by simulations and experimental prototypes in the literature. For simplicity reasons, the work is restricted to the two dimensional case due to simplicity reasons. This new method is compared to the classic one with respect to performance and energy expended by the system. The model consists on a springy leg, a simple body, and an actuated hinge-type hip. The new control strategy is composed of three parts, considering the hopping height, the forward speed, and the body orientation separately. The method exploits the system passive dynamics, defined as non-forced response of the system. In this case, the model is modified adding a spring to the hip. The method defines a desired leg trajectory close to the passive hip swing movement. Simulation results for both methods are analyzed and compared.
Resumo:
The overall objective of the thesis is to design a robot chassis frame which is a bearing structure of a vehicle supporting all mechanical components and providing structure and stability. Various techniques and scientific principles were used to design a chassis frame.Design principles were applied throughout the process. By using Solid-Works software,virtual models was made for chassis frame. Chassis frame of overall dimension 1597* 800*950 mm3 was designed. Center of mass lieson 1/3 of the length from front wheel at height 338mm in the symmetry plane. Overall weight of the chassis frame is 80.12kg. Manufacturing drawing is also provided. Additionally,structural analysis was done in FEMAP which gives the busting result for chassis design by taking into consideration stress and deflection on different kind of loading resembling real life case. On the basis of simulated result, selected material was verified. Resulting design is expected to perform its intended function without failure. As a suggestion for further research, additional fatigue analysis and proper dynamic analysis can be conducted to make the study more robust.
Resumo:
One of the major applications of underwater acoustic sensor networks (UWASN) is ocean environment monitoring. Employing data mules is an energy efficient way of data collection from the underwater sensor nodes in such a network. A data mule node such as an autonomous underwater vehicle (AUV) periodically visits the stationary nodes to download data. By conserving the power required for data transmission over long distances to a remote data sink, this approach extends the network life time. In this paper we propose a new MAC protocol to support a single mobile data mule node to collect the data sensed by the sensor nodes in periodic runs through the network. In this approach, the nodes need to perform only short distance, single hop transmission to the data mule. The protocol design discussed in this paper is motivated to support such an application. The proposed protocol is a hybrid protocol, which employs a combination of schedule based access among the stationary nodes along with handshake based access to support mobile data mules. The new protocol, RMAC-M is developed as an extension to the energy efficient MAC protocol R-MAC by extending the slot time of R-MAC to include a contention part for a hand shake based data transfer. The mobile node makes use of a beacon to signal its presence to all the nearby nodes, which can then hand-shake with the mobile node for data transfer. Simulation results show that the new protocol provides efficient support for a mobile data mule node while preserving the advantages of R-MAC such as energy efficiency and fairness.
Resumo:
A fast simulated annealing algorithm is developed for automatic object recognition. The normalized correlation coefficient is used as a measure of the match between a hypothesized object and an image. Templates are generated on-line during the search by transforming model images. Simulated annealing reduces the search time by orders of magnitude with respect to an exhaustive search. The algorithm is applied to the problem of how landmarks, for example, traffic signs, can be recognized by an autonomous vehicle or a navigating robot. The algorithm works well in noisy, real-world images of complicated scenes for model images with high information content.
Resumo:
El Grup de Visió per Computador i Robòtica (VICOROB) del departament d'Electrònica, Informàtica i Automàtica de la Universitat de Girona investiga en el camp de la robòtica submarina. Al CIRS (Centre d’Investigació en Robòtica Submarina), laboratori que forma part del grup VICOROB, el robot submarí Ictineu és la principal eina utilitzada per a desenvolupar els projectes de recerca. Recentment, el CIRS ha adquirit un nou sistema de sensors d' orientació basat en una unitat inercial i un giroscopi de fibra òptica. Aquest projecte pretén realitzar un estudi d' aquests dispositius i integrar-los al robot Ictineu. D' altra banda, aprofitant les característiques d’aquests sensors giroscopics i les mesures d' un sonar ja integrat al robot, es vol desenvolupar un sistema de localització capaç de determinar la posició del robot en el pla horitzontal de la piscina en temps real
Resumo:
L’objectiu d’aquest projecte/treball fi de carrera es estudiar els propulsors i el seu protocol de comunicació proporcionant informació útil a l’hora de dissenyar i construir el robot subaquàtic que implementi els propulsors
Resumo:
En el laboratori docent de robòtica s'utilitzen robots mòbils autònoms per treballar aspectes relacionats amb el posicionament, el control de trajectòries, la construcció de mapes... Es disposa de cinc robots comercials anomenats “e-puck”, que es caracteritzen per les seves dimensions reduïdes, dos motors i un conjunt complet de sensors. Aquests robots es programen en C++ utilitzant el simulador Webots, que disposa d'un conjunt de llibreries per programar el robot. També es disposa d'un entorn de proves on els robots es poden moure i evitar obstacles. Donat el poc temps que disposen els estudiants que realitzen pràctiques en aquest laboratori, és d'interès desenvolupar un software que contingui ja el posicionament del robot mitjançant odometria i també varis algoritmes de control de trajectòries. Per últim, en el laboratori es disposa de càmeres i targes d'adquisició de dades. Així doncs els objectius que s'han proposat per el projecte són: 1. Estudi de la documentació i software proporcinats pels fabricants del robot i de l'entorn Webots; 2. Programació del software de l'odometria i realització de proves per comprovar-ne la precisió; 3. Disseny, programació i verificació del software dels algoritmes de planificació de trajectòries. Realització d'experiments per a comprovar-ne el funcionament i 4. Disseny, programació i verificació d'un sistema de visió artificial que permeti conèixer la posició absoluta del robot en l'entorn
Resumo:
Microsoft Robotics Studio (MRS) és un entorn per a crear aplicacions per a robots utilitzant una gran varietat de plataformes hardware. Conté un entorn de simulació en el que es pot modelar i simular el moviment del robot. Permet també programar el robot, i executar-lo en l’entorn simulat o bé en el real. MRS resol la comunicació entre els diferents processos asíncrons que solen estar presents en el software de control d’un robot: processos per atendre sensors, actuadors, sistemes de control, comunicacions amb l’exterior,... MRS es pot utilitzar per modelar nous robots utilitzant components que ja estiguin disponibles en les seves llibreries, o també permet crear component nous. Per tal de conèixer en detall aquesta eina, seria interessant utilitzar-la per programa els robots e-pucks, uns robots mòbils autònoms de petites dimensions que disposen de dos motors i un complet conjunt de sensors. El que es vol és simular-los, realitzar un programa de control, realitzar la interfície amb el robot i comprovar el funcionament amb el robot real
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
This paper presents a vision-based localization approach for an underwater robot in a structured environment. The system is based on a coded pattern placed on the bottom of a water tank and an onboard down looking camera. Main features are, absolute and map-based localization, landmark detection and tracking, and real-time computation (12.5 Hz). The proposed system provides three-dimensional position and orientation of the vehicle along with its velocity. Accuracy of the drift-free estimates is very high, allowing them to be used as feedback measures of a velocity-based low-level controller. The paper details the localization algorithm, by showing some graphical results, and the accuracy of the system
Resumo:
This paper proposes a field application of a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot in cable tracking task. The learning system is characterized by using a direct policy search method for learning the internal state/action mapping. Policy only algorithms may suffer from long convergence times when dealing with real robotics. In order to speed up the process, the learning phase has been carried out in a simulated environment and, in a second step, the policy has been transferred and tested successfully on a real robot. Future steps plan to continue the learning process on-line while on the real robot while performing the mentioned task. We demonstrate its feasibility with real experiments on the underwater robot ICTINEU AUV
Resumo:
Autonomous underwater vehicles (AUV) represent a challenging control problem with complex, noisy, dynamics. Nowadays, not only the continuous scientific advances in underwater robotics but the increasing number of subsea missions and its complexity ask for an automatization of submarine processes. This paper proposes a high-level control system for solving the action selection problem of an autonomous robot. The system is characterized by the use of reinforcement learning direct policy search methods (RLDPS) for learning the internal state/action mapping of some behaviors. We demonstrate its feasibility with simulated experiments using the model of our underwater robot URIS in a target following task
Resumo:
This paper proposes a high-level reinforcement learning (RL) control system for solving the action selection problem of an autonomous robot. Although the dominant approach, when using RL, has been to apply value function based algorithms, the system here detailed is characterized by the use of direct policy search methods. Rather than approximating a value function, these methodologies approximate a policy using an independent function approximator with its own parameters, trying to maximize the future expected reward. The policy based algorithm presented in this paper is used for learning the internal state/action mapping of a behavior. In this preliminary work, we demonstrate its feasibility with simulated experiments using the underwater robot GARBI in a target reaching task