955 resultados para Autonomic Nervous System Diseases


Relevância:

100.00% 100.00%

Publicador:

Resumo:

No clear evidence is available in the literature regarding the acute effect of different styles of music on cardiac autonomic control. The present study aimed to evaluate the acute effects of classical baroque and heavy metal musical auditory stimulation on Heart Rate Variability (HRV) in healthy men. In this study, HRV was analyzed regarding time (SDNN, RMSSD, NN50, and pNN50) and frequency domain (LF, HF, and LF / HF) in 12 healthy men. HRV was recorded at seated rest for 10 minutes. Subsequently, the participants were exposed to classical baroque or heavy metal music for five minutes through an earphone at seated rest. After exposure to the first song, they remained at rest for five minutes and they were again exposed to classical baroque or heavy metal music. The music sequence was random for each individual. Standard statistical methods were used for calculation of means and standard deviations. Besides, ANOVA and Friedman test were used for parametric and non-parametric distributions, respectively. While listening to heavy metal music, SDNN was reduced compared to the baseline (P = 0.023). In addition, the LF index (ms(2) and nu) was reduced during exposure to both heavy metal and classical baroque musical auditory stimulation compared to the control condition (P = 0.010 and P = 0.048, respectively). However, the HF index (ms(2)) was reduced only during auditory stimulation with music heavy metal (P = 0.01). The LF/HF ratio on the other hand decreased during auditory stimulation with classical baroque music (P = 0.019). Acute auditory stimulation with the selected heavy metal musical auditory stimulation decreased the sympathetic and parasympathetic modulation on the heart, while exposure to a selected classical baroque music reduced sympathetic regulation on the heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamentode Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To report the audiological outcomes of cochlear implantation in two patients with severe to profound sensorineural hearing loss secondary to superficial siderosis of the CNS and discuss some programming peculiarities that were found in these cases. Retrospective review. Data concerning clinical presentation, diagnosis and audiological assessment pre- and post-implantation were collected of two patients with superficial siderosis of the CNS. Both patients showed good hearing thresholds but variable speech perception outcomes. One patient did not achieve open-set speech recognition, but the other achieved 70% speech recognition in quiet. Electrical compound action potentials could not be elicited in either patient. Map parameters showed the need for increased charge. Electrode impedances showed high longitudinal variability. The implants were fairly beneficial in restoring hearing and improving communication abilities although many reprogramming sessions have been required. The hurdle in programming was the need of frequent adjustments due to the physiologic variations in electrical discharges and neural conduction, besides the changes in the impedances. Patients diagnosed with superficial siderosis may achieve limited results in speech perception scores due to both cochlear and retrocochlear reasons. Careful counseling about the results must be given to the patients and their families before the cochlear implantation indication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present study was to investigate the participation of the sympathetic nervous system (SNS) in the control of glycerol-3-P (G3P) generating pathways in white adipose tissue (WAT) of rats in three situations in which the plasma insulin levels are low. WAT from 48 h fasted animals, 3 day-streptozotocin diabetic animals and high-protein, carbohydrate-free (HP) diet-fed rats was surgical denervated and the G3P generation pathways were evaluated. Food deprivation, diabetes and the HP diet provoke a marked decrease in the rate of glucose uptake and glycerokinase (GyK) activity, but a significant increase in the glyceroneogenesis, estimated by the phosphoenolpyruvate carboxykinase (PEPCK) activity and the incorporation of 1-[C-14]-pyruvate into glycerol-TAG. The denervation provokes a reduction (similar to 70%) in the NE content of WAT in fasted, diabetic and HP diet-fed rats. The denervation induced an increase in WAT glucose uptake of fed, fasted, diabetic and HP diet-fed rats (40%, 60%, 3.2 fold and 35%, respectively). TAG-glycerol synthesis from pyruvate was reduced by denervation in adipocytes of fed (58%) and fasted (36%), saline-treated (58%) and diabetic (23%), and HP diet-fed rats (11%). In these same groups the denervation reduced the PEPCK mRNA expression (75%-95%) and the PEPCK activity (35%-60%). The denervation caused a similar to 35% decrease in GyK activity of control rats and a further similar to 35% reduction in the already low enzyme activity of fasted, diabetic and HP diet-fed rats. These data suggest that the SNS plays an important role in modulating G3P generating pathways in WAT, in situations where insulin levels are low. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study performed the ultrastructural description of the synganglion of Rhipicephalus sanguineus males and females, aiming to contribute to the understanding of the cellular organization of this organ. The results show that the central nervous system of these individuals consists of a mass of fused nerves, named synganglion, from where nerves emerge towards several parts of the body. It is surrounded by the neural lamella, a uniform and acellular layer, constituted by repeated layers of homogeneous and finely granular material. The perineurium is just below, composed of glial cells, which extensions invaginate throughout the nervous tissue. The synganglion is internally divided into an outer cortex, which contains the cellular bodies of the neural cells and an inner neuropile. The neural cells can be classified into two types according to cell size, cytoplasm-nucleus relation, and neurosecretory activity. Type I cells are oval or spherical and present a large nucleus occupying most part of the cytoplasm, which contains few organelles. Type 2 cells are polygonal, present a great cytoplasm volume, and their nuclei are located in the cell periphery. The cytoplasm of these cells contains a well-developed rough endoplasmic reticulum, Golgi regions, mitochondria, and several neurosecretory granules. The subperineurium and the tracheal ramifications are found between the cortex and the neuropile. The latter is formed mainly by neural fibers, tracheal elements, and glial cells. The results obtained show that R. sanguineus males' and females' nervous tissue present an ultrastructural organization similar to the one described in the literature for other tick species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effect of inspiratory muscle training (IMT) on cardiac autonomic modulation and on peripheral nerve sympathetic activity in patients with chronic heart failure (CHF). METHODS: Functional capacity, low-frequency (LF) and high-frequency (HF) components of heart rate variability, muscle sympathetic nerve activity inferred by microneurography, and quality of life were determined in 27 patients with CHF who had been sequentially allocated to 1 of 2 groups: (1) control group (with no intervention) and (2) IMT group. Inspiratory muscle training consisted of respiratory exercises, with inspiratory threshold loading of seven 30-minute sessions per week for a period of 12 weeks, with a monthly increase of 30% in maximal inspiratory pressure (PImax) at rest. Multivariate analysis was applied to detect differences between baseline and followup period. RESULTS: Inspiratory muscle training significantly increased PImax (59.2 +/- 4.9 vs 87.5 +/- 6.5 cmH(2)O, P = .001) and peak oxygen uptake (14.4 +/- 0.7 vs 18.9 +/- 0.8 mL.kg(-1).min(-1), P = .002); decreased the peak ventilation (V. E) +/- carbon dioxide production (V-CO2) ratio (35.8 +/- 0.8 vs 32.5 +/- 0.4, P = .001) and the (V) over dotE +/-(V) over dotCO(2) slope (37.3 +/- 1.1 vs 31.3 +/- 1.1, P = .004); increased the HF component (49.3 +/- 4.1 vs 58.4 +/- 4.2 normalized units, P = .004) and decreased the LF component (50.7 +/- 4.1 vs 41.6 +/- 4.2 normalized units, P = .001) of heart rate variability; decreased muscle sympathetic nerve activity (37.1 +/- 3 vs 29.5 +/- 2.3 bursts per minute, P = .001); and improved quality of life. No significant changes were observed in the control group. CONCLUSION: Home-based IMT represents an important strategy to improve cardiac and peripheral autonomic controls, functional capacity, and quality of life in patients with CHF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports on the successful use of magnetic albumin nanosphere (MAN), consisting of maghemite nanoparticles hosted by albumin-based nanosphere, to target different sites within the central nervous system (CNS). Ultrastructural analysis by transmission electron microscopy (TEM) of the material collected from the mice was performed in the time window of 30 minutes up to 30 days after administration. Evidence found that the administered MAN was initially internalized and transported by erythrocytes across the blood-brain-barrier and transferred to glial cells and neuropils before internalization by neurons, mainly in the cerebellum. We hypothesize that the efficiency of MAN in crossing the BBB with no pathological alterations is due to the synergistic effect of its two main components, the iron-based nanosized particles and the hosting albumin-based nanospheres. We found that the MAN in targeting the CNS represents an important step towards the design of nanosized materials for clinical and diagnostic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Chronic exposure to musical auditory stimulation has been reported to improve cardiac autonomic regulation. However, it is not clear if music acutely influences it in response to autonomic tests. We evaluated the acute effects of music on heart rate variability (HRV) responses to the postural change maneuver (PCM) in women. Method We evaluated 12 healthy women between 18 and 28 years old and HRV was analyzed in the time (SDNN, RMSSD, NN50 and pNN50) and frequency (LF, HF and LF/HF ratio) domains. In the control protocol, the women remained at seated rest for 10 minutes and quickly stood up within three seconds and remained standing still for 15 minutes. In the music protocol, the women remained at seated rest for 10 minutes, were exposed to music for 10 minutes and quickly stood up within three seconds and remained standing still for 15 minutes. HRV was recorded at the following time: rest, music (music protocol) 0–5, 5–10 and 10–15 min during standing. Results In the control protocol the SDNN, RMSSD and pNN50 indexes were reduced at 10–15 minutes after the volunteers stood up, while the LF (nu) index was increased at the same moment compared to seated rest. In the protocol with music, the indexes were not different from control but the RMSSD, pNN50 and LF (nu) were different from the music period. Conclusion Musical auditory stimulation attenuates the cardiac autonomic responses to the PCM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A deficiência de nutrientes durante os períodos críticos do desenvolvimento tem sido associada com maior risco para desenvolver obesidade e diabetes Mellitus na vida adulta. Um dos mecanismos propostos refere-se à regulação do comportamento alimentar e às alterações do metabolismo energético do músculo esquelético. Recentemente, tem sido proposta a existência de uma comunicação entre o hipotálamo e o músculo esquelético a partir de sinais autonômicos que podem explicar as repercussões da desnutrição perinatal. Assim, esta revisão tem como objetivo discutir as repercussões da desnutrição perinatal sobre o comportamento alimentar e o metabolismo energético muscular e a comunicação existente entre o hipotálamo e o músculo via sinais adrenérgicos. Foram utilizadas as bases de dados MedLine/PubMed, Lilacs e Bireme, com publicações entre 2000 e 2011. Os termos de indexação utilizados foram: feeding behavior, energy metabolism, protein malnutrition, developmental plasticity, skeletal muscle e autonomic nervous system. Concluiu-se que a desnutrição perinatal pode atuar no controle hipotalâmico do comportamento alimentar e no metabolismo energético muscular, e a comunicação hipotálamo-músculo pode favorecer o desenvolvimento de obesidade e comorbidades durante o desenvolvimento.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations on formation and specification of neural precursor cells in the central nervous system of the Drosophila melanogaster embryoSpecification of a unique cell fate during development of a multicellular organism often is a function of its position. The Drosophila central nervous system (CNS) provides an ideal system to dissect signalling events during development that lead to cell specific patterns. Different cell types in the CNS are formed from a relatively few precursor cells, the neuroblasts (NBs), which delaminate from the neurogenic region of the ectoderm. The delamination occurs in five waves, S1-S5, finally leading to a subepidermal layer consisting of about 30 NBs, each with a unique identity, arranged in a stereotyped spatial pattern in each hemisegment. This information depends on several factors such as the concentrations of various morphogens, cell-cell interactions and long range signals present at the position and time of its birth. The early NBs, delaminating during S1 and S2, form an orthogonal array of four rows (2/3,4,5,6/7) and three columns (medial, intermediate, and lateral) . However, the three column and four row-arrangement pattern is only transitory during early stages of neurogenesis which is obscured by late emerging (S3-S5) neuroblasts (Doe and Goodman, 1985; Goodman and Doe, 1993). Therefore the aim of my study has been to identify novel genes which play a role in the formation or specification of late delaminating NBs.In this study the gene anterior open or yan was picked up in a genetic screen to identity novel and yet unidentified genes in the process of late neuroblast formation and specification. I have shown that the gene yan is responsible for maintaining the cells of the neuroectoderm in an undifferentiated state by interfering with the Notch signalling mechanism. Secondly, I have studied the function and interactions of segment polarity genes within a certain neuroectodermal region, namely the engrailed (en) expressing domain, with regard to the fate specification of a set of late neuroblasts, namely NB 6-4 and NB 7-3. I have dissected the regulatory interaction of the segment polarity genes wingless (wg), hedgehog (hh) and engrailed (en) as they maintain each other’s expression to show that En is a prerequisite for neurogenesis and show that the interplay of the segmentation genes naked (nkd) and gooseberry (gsb), both of which are targets of wingless (wg) activity, leads to differential commitment of NB 7-3 and NB 6-4 cell fate. I have shown that in the absence of either nkd or gsb one NB fate is replaced by the other. However, the temporal sequence of delamination is maintained, suggesting that formation and specification of these two NBs are under independent control.