897 resultados para Automatic segmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A significant part of daily energy expenditure may be attributed to non-exercise activity thermogenesis and exercise activity thermogenesis. Automatic recognition of postural allocations such as standing or sitting can be used in behavioral modification programs aimed at minimizing static postures. In this paper we propose a shoe-based device and related pattern recognition methodology for recognition of postural allocations. Inexpensive technology allows implementation of this methodology as a part of footwear. The experimental results suggest high efficiency and reliability of the proposed approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de PANACEA es engranar diferentes herramientas avanzadas para construir una fábrica de Recursos Lingüísticos (RL), una línea de producción que automatice los pasos implicados en la adquisición, producción, actualización y mantenimiento de los RL que la Traducción Automática y otras tecnologías lingüísticas, necesitan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic classification of makams from symbolic data is a rarely studied topic. In this paper, first a review of an n-gram based approach is presented using various representations of the symbolic data. While a high degree of precision can be obtained, confusion happens mainly for makams using (almost) the same scale and pitch hierarchy but differ in overall melodic progression, seyir. To further improve the system, first n-gram based classification is tested for various sections of the piece to take into account a feature of the seyir that melodic progression starts in a certain region of the scale. In a second test, a hierarchical classification structure is designed which uses n-grams and seyir features in different levels to further improve the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of PANACEA is to build a factory of LRs that automates the stages involved in the acquisition, production, updating and maintenance of LRs required by MT systems and by other applications based on language technologies, and simplifies eventual issues regarding intellectual property rights. This automation will cut down the cost, time and human effort significantly. These reductions of costs and time are the only way to guarantee the continuous supply of LRs that MT and other language technologies will be demanding in the multilingual Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Language Resources are a critical component for Natural Language Processing applications. Throughout the years many resources were manually created for the same task, but with different granularity and coverage information. To create richer resources for a broad range of potential reuses, nformation from all resources has to be joined into one. The hight cost of comparing and merging different resources by hand has been a bottleneck for merging existing resources. With the objective of reducing human intervention, we present a new method for automating merging resources. We have addressed the merging of two verbs subcategorization frame (SCF) lexica for Spanish. The results achieved, a new lexicon with enriched information and conflicting information signalled, reinforce our idea that this approach can be applied for other task of NLP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article reports on the results of the research done towards the fully automatically merging of lexical resources. Our main goal is to show the generality of the proposed approach, which have been previously applied to merge Spanish Subcategorization Frames lexica. In this work we extend and apply the same technique to perform the merging of morphosyntactic lexica encoded in LMF. The experiments showed that the technique is general enough to obtain good results in these two different tasks which is an important step towards performing the merging of lexical resources fully automatically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work we present here addresses cue-based noun classification in English and Spanish. Its main objective is to automatically acquire lexical semantic information by classifying nouns into previously known noun lexical classes. This is achieved by using particular aspects of linguistic contexts as cues that identify a specific lexical class. Here we concentrate on the task of identifying such cues and the theoretical background that allows for an assessment of the complexity of the task. The results show that, despite of the a-priori complexity of the task, cue-based classification is a useful tool in the automatic acquisition of lexical semantic classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automatic creation of polarity lexicons is a crucial issue to be solved in order to reduce time andefforts in the first steps of Sentiment Analysis. In this paper we present a methodology based onlinguistic cues that allows us to automatically discover, extract and label subjective adjectivesthat should be collected in a domain-based polarity lexicon. For this purpose, we designed abootstrapping algorithm that, from a small set of seed polar adjectives, is capable to iterativelyidentify, extract and annotate positive and negative adjectives. Additionally, the methodautomatically creates lists of highly subjective elements that change their prior polarity evenwithin the same domain. The algorithm proposed reached a precision of 97.5% for positiveadjectives and 71.4% for negative ones in the semantic orientation identification task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lexical Resources are a critical component for Natural Language Processing applications. However, the high cost of comparing and merging different resources has been a bottleneck to have richer resources with a broad range of potential uses for a significant number of languages.With the objective of reducing cost byeliminating human intervention, we present a new method for automating the merging of resources,with special emphasis in what we call the mapping step. This mapping step, which converts the resources into a common format that allows latter the merging, is usually performed with huge manual effort and thus makes the whole process very costly. Thus, we propose a method to perform this mapping fully automatically. To test our method, we have addressed the merging of two verb subcategorization frame lexica for Spanish, The resultsachieved, that almost replicate human work, demonstrate the feasibility of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we present the results of experimental work on the development of lexical class-based lexica by automatic means. Our purpose is to assess the use of linguistic lexical-class based information as a feature selection methodology for the use of classifiers in quick lexical development. The results show that the approach can help reduce the human effort required in the development of language resources significantly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lexical Resources are a critical component for Natural Language Processing applications. However, the high cost of comparing and merging different resources has been a bottleneck to obtain richer resources and a broader range of potential uses for a significant number of languages. With the objective of reducing cost by eliminating human intervention, we present a new method towards the automatic merging of resources. This method includes both, the automatic mapping of resources involved to a common format and merging them, once in this format. This paper presents how we have addressed the merging of two verb subcategorization frame lexica for Spanish, but our method will be extended to cover other types of Lexical Resources. The achieved results, that almost replicate human work, demonstrate the feasibility of the approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To test a method that allows automatic set-up of the ventilator controls at the onset of ventilation. DESIGN: Prospective randomized crossover study. SETTING: ICUs in one adult and one children's hospital in Switzerland. PATIENTS: Thirty intubated stable, critically ill patients (20 adults and 10 children). INTERVENTIONS: The patients were ventilated during two 20-min periods using a modified Hamilton AMADEUS ventilator. During the control period the ventilator settings were chosen immediately prior to the study. During the other period individual settings were automatically determined by the ventilatior (AutoInit). MEASUREMENTS AND RESULTS: Pressure, flow, and instantaneous CO2 concentration were measured at the airway opening. From these measurements, series dead space (V(DS)), expiratory time constant (RC), tidal volume (VT, total respiratory frequency (f(tot), minute ventilation (MV), and maximal and mean airway pressure (Paw, max and Paw, mean) were calculated. Arterial blood gases were analyzed at the end of each period. Paw, max was significantly less with the AutoInit ventilator settings while f(tot) was significantly greater (P < 0.05). The other values were not statistically significant. CONCLUSIONS: The AutoInit ventilator settings, which were automatically derived, were acceptable for all patients for a period of 20 min and were not found to be inferior to the control ventilator settings. This makes the AutoInit method potentially useful as an automatic start-up procedure for mechanical ventilation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large spatial inhomogeneity in transmit B(1) field (B(1)(+)) observable in human MR images at high static magnetic fields (B(0)) severely impairs image quality. To overcome this effect in brain T(1)-weighted images, the MPRAGE sequence was modified to generate two different images at different inversion times, MP2RAGE. By combining the two images in a novel fashion, it was possible to create T(1)-weighted images where the result image was free of proton density contrast, T(2) contrast, reception bias field, and, to first order, transmit field inhomogeneity. MP2RAGE sequence parameters were optimized using Bloch equations to maximize contrast-to-noise ratio per unit of time between brain tissues and minimize the effect of B(1)(+) variations through space. Images of high anatomical quality and excellent brain tissue differentiation suitable for applications such as segmentation and voxel-based morphometry were obtained at 3 and 7 T. From such T(1)-weighted images, acquired within 12 min, high-resolution 3D T(1) maps were routinely calculated at 7 T with sub-millimeter voxel resolution (0.65-0.85 mm isotropic). T(1) maps were validated in phantom experiments. In humans, the T(1) values obtained at 7 T were 1.15+/-0.06 s for white matter (WM) and 1.92+/-0.16 s for grey matter (GM), in good agreement with literature values obtained at lower spatial resolution. At 3 T, where whole-brain acquisitions with 1 mm isotropic voxels were acquired in 8 min, the T(1) values obtained (0.81+/-0.03 s for WM and 1.35+/-0.05 for GM) were once again found to be in very good agreement with values in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of type-2 fuzzy sets for managing high levels of uncertainty in the subjective knowledge of experts or of numerical information has focused on control and pattern classification systems in recent years. One of the main challenges in designing a type-2 fuzzy logic system is how to estimate the parameters of type-2 fuzzy membership function (T2MF) and the Footprint of Uncertainty (FOU) from imperfect and noisy datasets. This paper presents an automatic approach for learning and tuning Gaussian interval type-2 membership functions (IT2MFs) with application to multi-dimensional pattern classification problems. T2MFs and their FOUs are tuned according to the uncertainties in the training dataset by a combination of genetic algorithm (GA) and crossvalidation techniques. In our GA-based approach, the structure of the chromosome has fewer genes than other GA methods and chromosome initialization is more precise. The proposed approach addresses the application of the interval type-2 fuzzy logic system (IT2FLS) for the problem of nodule classification in a lung Computer Aided Detection (CAD) system. The designed IT2FLS is compared with its type-1 fuzzy logic system (T1FLS) counterpart. The results demonstrate that the IT2FLS outperforms the T1FLS by more than 30% in terms of classification accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human brainstem is a densely packed, complex but highly organised structure. It not only serves as a conduit for long projecting axons conveying motor and sensory information, but also is the location of multiple primary nuclei that control or modulate a vast array of functions, including homeostasis, consciousness, locomotion, and reflexive and emotive behaviours. Despite its importance, both in understanding normal brain function as well as neurodegenerative processes, it remains a sparsely studied structure in the neuroimaging literature. In part, this is due to the difficulties in imaging the internal architecture of the brainstem in vivo in a reliable and repeatable fashion. A modified multivariate mixture of Gaussians (mmMoG) was applied to the problem of multichannel tissue segmentation. By using quantitative magnetisation transfer and proton density maps acquired at 3 T with 0.8 mm isotropic resolution, tissue probability maps for four distinct tissue classes within the human brainstem were created. These were compared against an ex vivo fixated human brain, imaged at 0.5 mm, with excellent anatomical correspondence. These probability maps were used within SPM8 to create accurate individual subject segmentations, which were then used for further quantitative analysis. As an example, brainstem asymmetries were assessed across 34 right-handed individuals using voxel based morphometry (VBM) and tensor based morphometry (TBM), demonstrating highly significant differences within localised regions that corresponded to motor and vocalisation networks. This method may have important implications for future research into MRI biomarkers of pre-clinical neurodegenerative diseases such as Parkinson's disease.