910 resultados para Automated quantification
Resumo:
Cortical folding (gyrification) is determined during the first months of life, so that adverse events occurring during this period leave traces that will be identifiable at any age. As recently reviewed by Mangin and colleagues(2), several methods exist to quantify different characteristics of gyrification. For instance, sulcal morphometry can be used to measure shape descriptors such as the depth, length or indices of inter-hemispheric asymmetry(3). These geometrical properties have the advantage of being easy to interpret. However, sulcal morphometry tightly relies on the accurate identification of a given set of sulci and hence provides a fragmented description of gyrification. A more fine-grained quantification of gyrification can be achieved with curvature-based measurements, where smoothed absolute mean curvature is typically computed at thousands of points over the cortical surface(4). The curvature is however not straightforward to comprehend, as it remains unclear if there is any direct relationship between the curvedness and a biologically meaningful correlate such as cortical volume or surface. To address the diverse issues raised by the measurement of cortical folding, we previously developed an algorithm to quantify local gyrification with an exquisite spatial resolution and of simple interpretation. Our method is inspired of the Gyrification Index(5), a method originally used in comparative neuroanatomy to evaluate the cortical folding differences across species. In our implementation, which we name local Gyrification Index (lGI(1)), we measure the amount of cortex buried within the sulcal folds as compared with the amount of visible cortex in circular regions of interest. Given that the cortex grows primarily through radial expansion(6), our method was specifically designed to identify early defects of cortical development. In this article, we detail the computation of local Gyrification Index, which is now freely distributed as a part of the FreeSurfer Software (http://surfer.nmr.mgh.harvard.edu/, Martinos Center for Biomedical Imaging, Massachusetts General Hospital). FreeSurfer provides a set of automated reconstruction tools of the brain's cortical surface from structural MRI data. The cortical surface extracted in the native space of the images with sub-millimeter accuracy is then further used for the creation of an outer surface, which will serve as a basis for the lGI calculation. A circular region of interest is then delineated on the outer surface, and its corresponding region of interest on the cortical surface is identified using a matching algorithm as described in our validation study(1). This process is repeatedly iterated with largely overlapping regions of interest, resulting in cortical maps of gyrification for subsequent statistical comparisons (Fig. 1). Of note, another measurement of local gyrification with a similar inspiration was proposed by Toro and colleagues(7), where the folding index at each point is computed as the ratio of the cortical area contained in a sphere divided by the area of a disc with the same radius. The two implementations differ in that the one by Toro et al. is based on Euclidian distances and thus considers discontinuous patches of cortical area, whereas ours uses a strict geodesic algorithm and include only the continuous patch of cortical area opening at the brain surface in a circular region of interest.
Resumo:
Despite the considerable environmental importance of mercury (Hg), given its high toxicity and ability to contaminate large areas via atmospheric deposition, little is known about its activity in soils, especially tropical soils, in comparison with other heavy metals. This lack of information about Hg arises because analytical methods for determination of Hg are more laborious and expensive compared to methods for other heavy metals. The situation is even more precarious regarding speciation of Hg in soils since sequential extraction methods are also inefficient for this metal. The aim of this paper is to present a technique of thermal desorption associated with atomic absorption spectrometry, TDAAS, as an efficient tool for quantitative determination of Hg in soils. The method consists of the release of Hg by heating, followed by its quantification by atomic absorption spectrometry. It was developed by constructing calibration curves in different soil samples based on increasing volumes of standard Hg2+ solutions. Performance, accuracy, precision, and quantification and detection limit parameters were evaluated. No matrix interference was detected. Certified reference samples and comparison with a Direct Mercury Analyzer, DMA (another highly recognized technique), were used in validation of the method, which proved to be accurate and precise.
Resumo:
Three-dimensional imaging and quantification of myocardial function are essential steps in the evaluation of cardiac disease. We propose a tagged magnetic resonance imaging methodology called zHARP that encodes and automatically tracks myocardial displacement in three dimensions. Unlike other motion encoding techniques, zHARP encodes both in-plane and through-plane motion in a single image plane without affecting the acquisition speed. Postprocessing unravels this encoding in order to directly track the 3-D displacement of every point within the image plane throughout an entire image sequence. Experimental results include a phantom validation experiment, which compares zHARP to phase contrast imaging, and an in vivo study of a normal human volunteer. Results demonstrate that the simultaneous extraction of in-plane and through-plane displacements from tagged images is feasible.
Resumo:
Two methods of differential isotopic coding of carboxylic groups have been developed to date. The first approach uses d0- or d3-methanol to convert carboxyl groups into the corresponding methyl esters. The second relies on the incorporation of two 18O atoms into the C-terminal carboxylic group during tryptic digestion of proteins in H(2)18O. However, both methods have limitations such as chromatographic separation of 1H and 2H derivatives or overlap of isotopic distributions of light and heavy forms due to small mass shifts. Here we present a new tagging approach based on the specific incorporation of sulfanilic acid into carboxylic groups. The reagent was synthesized in a heavy form (13C phenyl ring), showing no chromatographic shift and an optimal isotopic separation with a 6 Da mass shift. Moreover, sulfanilic acid allows for simplified fragmentation in matrix-assisted laser desorption/ionization (MALDI) due the charge fixation of the sulfonate group at the C-terminus of the peptide. The derivatization is simple, specific and minimizes the number of sample treatment steps that can strongly alter the sample composition. The quantification is reproducible within an order of magnitude and can be analyzed either by electrospray ionization (ESI) or MALDI. Finally, the method is able to specifically identify the C-terminal peptide of a protein by using GluC as the proteolytic enzyme.
Resumo:
A large percentage of bridges in the state of Iowa are classified as structurally or fiinctionally deficient. These bridges annually compete for a share of Iowa's limited transportation budget. To avoid an increase in the number of deficient bridges, the state of Iowa decided to implement a comprehensive Bridge Management System (BMS) and selected the Pontis BMS software as a bridge management tool. This program will be used to provide a selection of maintenance, repair, and replacement strategies for the bridge networks to achieve an efficient and possibly optimal allocation of resources. The Pontis BMS software uses a new rating system to evaluate extensive and detailed inspection data gathered for all bridge elements. To manually collect these data would be a highly time-consuming job. The objective of this work was to develop an automated-computerized methodology for an integrated data base that includes the rating conditions as defined in the Pontis program. Several of the available techniques that can be used to capture inspection data were reviewed, and the most suitable method was selected. To accomplish the objectives of this work, two userfriendly programs were developed. One program is used in the field to collect inspection data following a step-by-step procedure without the need to refer to the Pontis user's manuals. The other program is used in the office to read the inspection data and prepare input files for the Pontis BMS software. These two programs require users to have very limited knowledge of computers. On-line help screens as well as options for preparing, viewing, and printing inspection reports are also available. The developed data collection software will improve and expedite the process of conducting bridge inspections and preparing the required input files for the Pontis program. In addition, it will eliminate the need for large storage areas and will simplify retrieval of inspection data. Furthermore, the approach developed herein will facilitate transferring these captured data electronically between offices within the Iowa DOT and across the state.
Resumo:
OBJECTIVE: To evaluate an automated seizure detection (ASD) algorithm in EEGs with periodic and other challenging patterns. METHODS: Selected EEGs recorded in patients over 1year old were classified into four groups: A. Periodic lateralized epileptiform discharges (PLEDs) with intermixed electrical seizures. B. PLEDs without seizures. C. Electrical seizures and no PLEDs. D. No PLEDs or seizures. Recordings were analyzed by the Persyst P12 software, and compared to the raw EEG, interpreted by two experienced neurophysiologists; Positive percent agreement (PPA) and false-positive rates/hour (FPR) were calculated. RESULTS: We assessed 98 recordings (Group A=21 patients; B=29, C=17, D=31). Total duration was 82.7h (median: 1h); containing 268 seizures. The software detected 204 (=76.1%) seizures; all ictal events were captured in 29/38 (76.3%) patients; in only in 3 (7.7%) no seizures were detected. Median PPA was 100% (range 0-100; interquartile range 50-100), and the median FPR 0/h (range 0-75.8; interquartile range 0-4.5); however, lower performances were seen in the groups containing periodic discharges. CONCLUSION: This analysis provides data regarding the yield of the ASD in a particularly difficult subset of EEG recordings, showing that periodic discharges may bias the results. SIGNIFICANCE: Ongoing refinements in this technique might enhance its utility and lead to a more extensive application.
Resumo:
The high molecular weight and low concentration of brain glycogen render its noninvasive quantification challenging. Therefore, the precision increase of the quantification by localized (13) C MR at 9.4 to 14.1 T was investigated. Signal-to-noise ratio increased by 66%, slightly offset by a T(1) increase of 332 ± 15 to 521 ± 34 ms. Isotopic enrichment after long-term (13) C administration was comparable (≈ 40%) as was the nominal linewidth of glycogen C1 (≈ 50 Hz). Among the factors that contributed to the 66% observed increase in signal-to-noise ratio, the T(1) relaxation time impacted the effective signal-to-noise ratio by only 10% at a repetition time = 1 s. The signal-to-noise ratio increase together with the larger spectral dispersion at 14.1 T resulted in a better defined baseline, which allowed for more accurate fitting. Quantified glycogen concentrations were 5.8 ± 0.9 mM at 9.4 T and 6.0 ± 0.4 mM at 14.1 T; the decreased standard deviation demonstrates the compounded effect of increased magnetization and improved baseline on the precision of glycogen quantification.
Resumo:
Amplified Fragment Length Polymorphisms (AFLPs) are a cheap and efficient protocol for generating large sets of genetic markers. This technique has become increasingly used during the last decade in various fields of biology, including population genomics, phylogeography, and genome mapping. Here, we present RawGeno, an R library dedicated to the automated scoring of AFLPs (i.e., the coding of electropherogram signals into ready-to-use datasets). Our program includes a complete suite of tools for binning, editing, visualizing, and exporting results obtained from AFLP experiments. RawGeno can either be used with command lines and program analysis routines or through a user-friendly graphical user interface. We describe the whole RawGeno pipeline along with recommendations for (a) setting the analysis of electropherograms in combination with PeakScanner, a program freely distributed by Applied Biosystems; (b) performing quality checks; (c) defining bins and proceeding to scoring; (d) filtering nonoptimal bins; and (e) exporting results in different formats.
Resumo:
The presence of human adenoviruses in recreational water might cause disease in the population upon exposure. Human adenoviruses detected by PCR could also serve as indicators of the virological water quality. In order to assess the applicability of human adenoviruses to the evaluation of the faecal contamination in European bathing waters, a real-time quantitative PCR assay was developed for the quantification of human adenoviruses in 132 samples collected from 24 different recreational marine and freshwater sites in nine European countries.Selected samples presenting positive nested-PCR results for human adenoviruses were analyzed using quantitative PCR and 80 samples from a total of 132 produced quantitative results with mean values of 3.2x102 10 per 100 ml of water, human adenovirus 41 being the most prevalent serotype. Human adenoviruses were quantified in samples from all 15 surveillance laboratories. Statistical analysis showed no homogeneous linear relation between humanadenoviruses and E. coli, intestinal enterococci or somatic coliphages concentrations in the tested samples when considering all the data together. Significant correlations between human adenoviruses and at least one of the other indicators were observed only when data from individual Laboratories were considered. The quantification of human adenoviruses may provide complementary information in relation to the use of bacterial standards in the control of water quality in bathing water.
Resumo:
This project developed an automatic conversion software tool that takes input a from an Iowa Department of Transportation (DOT) MicroStation three-dimensional (3D) design file and converts it into a form that can be used by the University of Iowa’s National Advanced Driving Simulator (NADS) MiniSim. Once imported into the simulator, the new roadway has the identical geometric design features as in the Iowa DOT design file. The base roadway appears as a wireframe in the simulator software. Through additional software tools, textures and shading can be applied to the roadway surface and surrounding terrain to produce the visual appearance of an actual road. This tool enables Iowa DOT engineers to work with the universities to create drivable versions of prospective roadway designs. By driving the designs in the simulator, problems can be identified early in the design process. The simulated drives can also be used for public outreach and human factors driving research.
Resumo:
The creation of three-dimensional (3D) drawings for proposed designs for construction, re-construction and rehabilitation activities are becoming increasingly common for highway designers, whether by department of transportation (DOT) employees or consulting engineers. However, technical challenges exist that prevent the use of these 3D drawings/models from being used as the basis of interactive simulation. Use of driving simulation to service the needs of the transportation industry in the US lags behind Europe due to several factors, including lack of technical infrastructure at DOTs, cost of maintaining and supporting simulation infrastructure—traditionally done by simulation domain experts—and cost and effort to translate DOT domain data into the simulation domain.
Resumo:
The creation of three-dimensional (3D) drawings for proposed designs for construction, re-construction and rehabilitation activities are becoming increasingly common for highway designers, whether by department of transportation (DOT) employees or consulting engineers. However, technical challenges exist that prevent the use of these 3D drawings/models from being used as the basis of interactive simulation. Use of driving simulation to service the needs of the transportation industry in the US lags behind Europe due to several factors, including lack of technical infrastructure at DOTs, cost of maintaining and supporting simulation infrastructure—traditionally done by simulation domain experts—and cost and effort to translate DOT domain data into the simulation domain.
Resumo:
"Technical challenges exist with infrastructure that can be addressed by nondestructive evaluation (NDE) methods, such as detecting corrosion damage to reinforcing steel that anchor concrete bridge railings to bridge road decks. Moisture and chloride ions reach the anchors along the cold joint between the rails and deck, causing corrosion that weakens the anchors and ultimately the barriers. The Center for Nondestructive Evaluation at Iowa State University has experience in development of measurement techniques and new sensors using a variety of interrogating energies. This research evaluated feasibility of three technologies — x-ray radiation, ground-penetrating radar (GPR), and magnetic flux leakage (MFL) — for detection and quantification of corrosion of embedded reinforcing steel. Controlled samples containing pristine reinforcing steel with and without epoxy and reinforcing steel with 25 percent and 50 percent section reduction were embedded in concrete at 2.5 in. deep for laboratory evaluation. Two of the techniques, GPR and MFL, were used in a limited field test on the Iowa Highway 210 Bridge over Interstate 35 in Story County. The methods provide useful and complementary information. GPR provides a rapid approach to identify reinforcing steel that has anomalous responses. MFL provides similar detection responses but could be optimized to provide more quantitative correlation to actual condition. Full implementation could use either GPR or MFL methods to identify areas of concern, followed by radiography to give a visual image of the actual condition, providing the final guidance for maintenance actions." The full 103 page report and the 2 page Tech Transfer Summary are included in this link.
Resumo:
PURPOSE: To improve the tag persistence throughout the whole cardiac cycle by providing a constant tag-contrast throughout all the cardiac phases when using balanced steady-state free precession (bSSFP) imaging. MATERIALS AND METHODS: The flip angles of the imaging radiofrequency pulses were optimized to compensate for the tagging contrast-to-noise ratio (Tag-CNR) fading at later cardiac phases in bSSFP imaging. Complementary spatial modulation of magnetization (CSPAMM) tagging was implemented to improve the Tag-CNR. Numerical simulations were performed to examine the behavior of the Tag-CNR with the proposed method, and to compare the resulting Tag-CNR with that obtained from the more commonly used spoiled gradient echo (SPGR) imaging. A gel phantom, as well as five healthy human volunteers, were scanned on a 1.5T scanner using bSSFP imaging with and without the proposed technique. The phantom was also scanned with SPGR imaging. RESULTS: With the proposed technique, the Tag-CNR remained almost constant during the whole cardiac cycle. Using bSSFP imaging, the Tag-CNR was about double that of SPGR. CONCLUSION: The tag persistence was significantly improved when the proposed method was applied, with better Tag-CNR during the diastolic cardiac phase. The improved Tag-CNR will support automated tagging analysis and quantification methods.