810 resultados para Australian research
Resumo:
This paper examines the working pathways of young full-time university students in Australia. It draws on some of the data from a three year research project funded by the Australian Research Council. The project was called ‘Changing the way that Australian enter the workforce: Part-time working careers of young full-time school and tertiary students’. The project had three industry partners: Service Skills Australia (the Industry Skills Council for the service industries), McDonalds Australia (a fast food company) and The Reject Shop (a discount chain). Much of the research took place inside companies, in schools and with national stakeholders (eg Smith & Patton, 2011; Smith & Patton, 2013), but this paper reports on the research that took place with students in universities. In the project we were keen to explore the notion of part-time working while studying as a medium-term career, especially in the context of the need for career flexibility and adaptability (Poehnell & Amundson, 2002).
Resumo:
Developer paid charges or contributions are a commonly used infrastructure funding mechanism for local governments. However, developers claim that these costs are merely passed on to home buyers, with adverse effects to housing affordability. Despite a plethora of government reports and industry advocacy, there remains no empirical evidence in Australia to confirm or quantify this passing on effect to home buyers and hence no data for which governments to base policy decision upon. This paper examines the question of who really pays for urban infrastructure and the impact of infrastructure charges on housing affordability. It presents the findings of a number of international empirical studies that provide evidence that infrastructure charges do increase house prices. Based on international findings, and in the absence of any Australian research, then these findings suggest that if the international findings are transferable, then there is empirical evidence to support the proposition that developer paid infrastructure charges are a significant contributor to increasing house prices.
Resumo:
Imprisonment is a growth industry in Australia. Over the past 30–40 years all state and territory jurisdictions have registered massive rises in both the absolute numbers of those imprisoned and the per capita use of imprisonment as a tool of punishment and control. Yet over this period there has been surprisingly little criminological attention to the national picture of imprisonment in Australia and to understanding jurisdictional variation, change and continuity in broader theoretical terms. This article reports initial findings from the Australian Prisons Project, a multi-investigator Australian Research Council funded project intended to trace penal developments in Australia since about 1970. The article begins by outlining the notion of penal culture that provides the analytic lens for the project. It outlines various intersecting areas of study being undertaken before focusing on just three features of the contemporary penal field – restrictions upon presumptions of bail, the rise of post-sentence indefinite detention and the role of supermax confinement. Each in their own way exemplifies an aspect of and contributes to what we conclude to be the revalorization of the prison in Australian culture and society.
Resumo:
Safety concerns in the operation of autonomous aerial systems require safe-landing protocols be followed during situations where the mission should be aborted due to mechanical or other failure. This article presents a pulse-coupled neural network (PCNN) to assist in the vegetation classification in a vision-based landing site detection system for an unmanned aircraft. We propose a heterogeneous computing architecture and an OpenCL implementation of a PCNN feature generator. Its performance is compared across OpenCL kernels designed for CPU, GPU, and FPGA platforms. This comparison examines the compute times required for network convergence under a variety of images to determine the plausibility for real-time feature detection.
Resumo:
This paper contributes to critical policy research by theorising one aspect of policy enactment, the meaning making work of a cohort of mid-level policy actors. Specifically, we propose that Basil Bernstein’s work on the structuring of pedagogic discourse, in particular, the concept of recontextualisation, may add to understandings of the policy work of interpretation and translation. Recontextualisation refers to the relational processes of selecting and moving knowledge from one context to another, as well as to the distinctive re-organisation of knowledge as an instructional and regulative or moral discourse. Processes of recontextualisation necessitate an analysis of power and control relations, and therefore add to the Foucauldian theorisations of power that currently dominate the critical policy literature. A process of code elaboration (decoding and recoding) takes place in various recontextualising agencies, responsible for the production of professional development materials, teaching guidelines and curriculum resources. We propose that mid-level policy actors are crucial to the work of policy interpretation and translation because they are engaged in elaborating the condensed codes of policy texts to an imagined logic of teachers’ practical work. To illustrate our theoretical points we draw on data; collected for an Australian research project on the accounts of mid-level policy actors responsible for the interpretation of child protection and safety policies for staff in Queensland schools.
Resumo:
This paper reports on a four year Australian Research Council funded Linkage Project titled Skilling Indigenous Queensland, conducted in regional areas of Queensland, Australia from 2009 to 2013. The project sought to investigate Vocational Education and Training (VET) and teaching, Indigenous learners’ needs, employer culture and expectations and community culture and expectations to identify best practice in numeracy teaching for Indigenous VET learners. Specifically it focused on ways to enhance the teaching and learning of courses and the associated mathematics in such courses to benefit learners and increase their future opportunities of employment. To date thirty - nine teachers/trainers/teacher aides and two hundred and thirty - one students consented to participate in the project. Nine VET courses offered in schools and Technical and Further Education Institutes (TAFE) were nominated to be the focus on the study. This paper focuses on student questionnaire responses and interview responses from teachers/trainers one high school principal and five students as a result of these processes, the findings indicated that VET course teachers work hard to adopt contextualising strategies to their teaching; however this process is not always straight forward because of the perceptions of how mathematics has been taught and learned by trainers and teachers. Further teachers, trainers and students have high expectations of one another with the view to successful outcomes from the courses.
Resumo:
Australian research and technological solutions are now being applied throughout the world.
Resumo:
Two lecture notes describe recent developments of evolutionary multi objective optimization (MO) techniques in detail and their advantages and drawbacks compared to traditional deterministic optimisers. The role of Game Strategies (GS), such as Pareto, Nash or Stackelberg games as companions or pre-conditioners of Multi objective Optimizers is presented and discussed on simple mathematical functions in Part I , as well as their implementations on simple aeronautical model optimisation problems on the computer using a friendly design framework in Part II. Real life (robust) design applications dealing with UAVs systems or Civil Aircraft and using the EAs and Game Strategies combined material of Part I & Part II are solved and discussed in Part III providing the designer new compromised solutions useful to digital aircraft design and manufacturing. Many details related to Lectures notes Part I, Part II and Part III can be found by the reader in [68].
Resumo:
This paper investigates the teaching and learning of fractions to Indigenous adult learners in a Civil Construction Certificate Course. More specifically it explores why the use of materials is critical to building knowledge and understanding. This focus is important for two reasons. First, it allows for considerations of a trainer’s approach for teaching fractions and, second it provides insights into how adult learners can be supported with representing their practical experiences of fractions to make generalisation thus building on their knowledge and learning experiences. The paper draws on teaching episodes from an Australian Research Council funded Linkage project that investigates how mathematics is taught and learned in Certificate Courses, here, Certificate 11 in Civil Construction. Action research and decolonising methods (Smith, 1999) were used to conduct the research. Video excerpts which feature one trainer and three students are analysed and described. Findings from the data indicate that adult learners need to be supported with materials to assist with building their capacity to know and apply understandings of fractions in a range of contexts, besides construction. Without materials and where fractions are taught via pen and paper tasks, students are less likely to retain and apply fraction ideas to their Certificate Course. Further they are less likely to understand decimals because of limited understanding of fractions.
Resumo:
The interest in utilising multiple heterogeneous Unmanned Aerial Vehicles (UAVs) in close proximity is growing rapidly. As such, many challenges are presented in the effective coordination and management of these UAVs; converting the current n-to-1 paradigm (n operators operating a single UAV) to the 1-to-n paradigm (one operator managing n UAVs). This paper introduces an Information Abstraction methodology used to produce the functional capability framework initially proposed by Chen et al. and its Level Of Detail (LOD) indexing scale. This framework was validated through comparing the operator workload and Situation Awareness (SA) of three experiment scenarios involving multiple autonomously heterogeneous UAVs. The first scenario was set in a high LOD configuration with highly abstracted UAV functional information; the second scenario was set in a mixed LOD configuration; and the final scenario was set in a low LOD configuration with maximal UAV functional information. Results show that there is a significant statistical decrease in operator workload when a UAV’s functional information is displayed at its physical form (low LOD - maximal information) when comparing to the mixed LOD configuration.
Resumo:
This paper presents a practical recursive fault detection and diagnosis (FDD) scheme for online identification of actuator faults for unmanned aerial systems (UASs) based on the unscented Kalman filtering (UKF) method. The proposed FDD algorithm aims to monitor health status of actuators and provide indication of actuator faults with reliability, offering necessary information for the design of fault-tolerant flight control systems to compensate for side-effects and improve fail-safe capability when actuator faults occur. The fault detection is conducted by designing separate UKFs to detect aileron and elevator faults using a nonlinear six degree-of-freedom (DOF) UAS model. The fault diagnosis is achieved by isolating true faults by using the Bayesian Classifier (BC) method together with a decision criterion to avoid false alarms. High-fidelity simulations with and without measurement noise are conducted with practical constraints considered for typical actuator fault scenarios, and the proposed FDD exhibits consistent effectiveness in identifying occurrence of actuator faults, verifying its suitability for integration into the design of fault-tolerant flight control systems for emergency landing of UASs.
Resumo:
Multi-touch interfaces across a wide range of hardware platforms are becoming pervasive. This is due to the adoption of smart phones and tablets in both the consumer and corporate market place. This paper proposes a human-machine interface to interact with unmanned aerial systems based on the philosophy of multi-touch hardware-independent high-level interaction with multiple systems simultaneously. Our approach incorporates emerging development methods for multi-touch interfaces on mobile platforms. A framework is defined for supporting multiple protocols. An open source solution is presented that demonstrates: architecture supporting different communications hardware; an extensible approach for supporting multiple protocols; and the ability to monitor and interact with multiple UAVs from multiple clients simultaneously. Validation tests were conducted to assess the performance, scalability and impact on packet latency under different client configurations.
Resumo:
In this paper, we present an approach for image-based surface classification using multi-class Support Vector Machine (SVM). Classifying surfaces in aerial images is an important step towards an increased aircraft autonomy in emergency landing situations. We design a one-vs-all SVM classifier and conduct experiments on five data sets. Results demonstrate consistent overall performance figures over 88% and approximately 8% more accurate to those published on multi-class SVM on the KTH TIPS data set. We also show per-class performance values by using normalised confusion matrices. Our approach is designed to be executed online using a minimum set of feature attributes representing a feasible and ready-to-deploy system for onboard execution.
Resumo:
Suspended loads on UAVs can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present software and flight system architecture to test controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions.
Resumo:
The development of global navigation satellite systems (GNSS) provides a solution of many applied problems with increasingly higher quality and accuracy nowadays. Researches that are carried out by the Bavarian Academy of Sciences and Humanities in Munich (BAW) in the field of airborne gravimetry are based on sophisticated data processing from high frequency GNSS receiver for kinematic aircraft positioning. Applied algorithms for inertial acceleration determination are based on the high sampling rate (50Hz) and on reducing of such factors as ionosphere scintillation and multipath at aircraft /antenna near field effects. The quality of the GNSS derived kinematic height are studied also by intercomparison with lift height variations collected by a precise high sampling rate vertical scale [1]. This work is aimed at the ways of more accurate determination of mini-aircraft altitude by means of high frequency GNSS receivers, in particular by considering their dynamic behaviour.