702 resultados para Australia -- History


Relevância:

30.00% 30.00%

Publicador:

Resumo:

General note: Title and date provided by Bettye Lane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spread of invasive organisms is one of the greatest threats to ecosystems and biodiversity worldwide. Understanding the evolutionary and ecological factors responsible for the transport, introduction, establishment and spread of invasive species will assist the development of control strategies. The New Zealand mudsnail, Potamopyrgus antipodarum (Gray 1843) (Gastropoda: Hydrobiidae), is a global freshwater invader, with populations established in Europe, Asia, the Americas and Australia. While sexual and asexual P. antipodarum coexist in the native range, invasive populations reproduce by parthenogenesis, producing dense populations that compete for resources with native species. Potamopyrgus antipodarum is a natural model system for the study of evolutionary and ecological processes underlying invasion. This thesis assesses the invasion history, genetic diversity and ecology of P. antipodarum in Australia, with particular focus on: a) potential source populations, b) distribution and structure of populations, and c) species traits related to the establishment, persistence and spread of invasive P. antipodarum. Genetic analyses were carried out on specimens collected for this study from New Zealand and Australia, along with existing museum samples. In combination with published data, the analyses revealed low genetic diversity among and within invasive populations in south-eastern Australia, relative to New Zealand populations. Phylogenetic relationships inferred from mitochondrial sequences indicated that the Australian populations belong to clades dominated by parthenogenetic haplotypes that are known to be present in Europe and the US. These ‘invasive clades’ are likely to originate from the North Island of New Zealand, and suggest a role for selection in determining genetic composition of invasive populations. The genotypic diversity of Australian P. antipodarum was low, with few, closely related clones distributed across south-eastern Australia. The pattern of clone distribution was not consistent with any assessed geographical or abiotic factors; instead a few, widely-distributed clones were present in high frequencies at most sites. Differences in clone frequencies were found, which may indicate differential success of clonal lineages. A range of traits have been proposed as facilitators of invasion success, and within-species variation in these traits can promote differential success of genotypes. Using laboratory-based experiments, the performance of the three most common Australian clones was tested across a suite of invasion-relevant traits. Ecologically-relevant variation in traits was found among the clones. These differences may have determined the spatial distribution of clones, and may continue to do so into the future. This thesis found that the P. antipodarum invasion of Australia is the result of few introductions of a small number of globally-invasive genotypes that vary in ecologically-relevant traits. From a source of considerable genetic diversity in the native range, very few genotypes have become invasive. Those that are invasive appear to be very successful at continental scales. These findings highlight a capacity in asexual invaders to successfully invade, and potentially adapt to, a broad range of ecosystems. The P. antipodarum invasion system is amenable to research using combinations of field-based studies, molecular and laboratory approaches, and is likely to yield significant, broadly-applicable insights into invasion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2014, the Australian Government implemented the Emissions Reduction Fund to offer incentives for businesses to reduce greenhouse gas (GHG) emissions by following approved methods. Beef cattle businesses in northern Australia can participate by applying the 'reducing GHG emissions by feeding nitrates to beef cattle' methodology and the 'beef cattle herd management' methods. The nitrate (NO3) method requires that each baseline area must demonstrate a history of urea use. Projects earn Australian carbon credit units (ACCU) for reducing enteric methane emissions by substituting NO3 for urea at the same amount of fed nitrogen. NO3 must be fed in the form of a lick block because most operations do not have labour or equipment to manage daily supplementation. NO3 concentrations, after a 2-week adaptation period, must not exceed 50 g NO3/adult animal equivalent per day or 7 g NO3/kg dry matter intake per day to reduce the risk of NO3 toxicity. There is also a 'beef cattle herd management' method, approved in 2015, that covers activities that improve the herd emission intensity (emissions per unit of product sold) through change in the diet or management. The present study was conducted to compare the required ACCU or supplement prices for a 2% return on capital when feeding a low or high supplement concentration to breeding stock of either (1) urea, (2) three different forms of NO3 or (3) cottonseed meal (CSM), at N concentrations equivalent to 25 or 50 g urea/animal equivalent, to fasten steer entry to a feedlot (backgrounding), in a typical breeder herd on the coastal speargrass land types in central Queensland. Monte Carlo simulations were run using the software @risk, with probability functions used for (1) urea, NO3 and CSM prices, (2) GHG mitigation, (3) livestock prices and (4) carbon price. Increasing the weight of steers at a set turnoff month by feeding CSM was found to be the most cost-effective option, with or without including the offset income. The required ACCU prices for a 2% return on capital were an order of magnitude higher than were indicative carbon prices in 2015 for the three forms of NO3. The likely costs of participating in ERF projects would reduce the return on capital for all mitigation options. © CSIRO 2016.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.