993 resultados para Atomic Force


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin films of ZrO2 were prepared by reactive magnetron sputtering. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity and packing density. The root mean square roughness of the sample observed from atomic force microscope is about 5.75 nm which is comparable to the average grain size of the thin film which is about 6 nm obtained from X-ray diffraction. The film annealed at 873 K exhibits an optical band gap of around 4.83 eV and shows +4 oxidation state of zirconium indicating fully oxidized zirconium, whereas higher annealing temperatures lead to oxygen deficiency in the films and this is reflected in their properties. A discontinuity in the imaginary part of the AC conductivity was observed in the frequency range of tens of thousands of Hz, where as, the real part does not show such behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With an objective to replace a water droplet from a steel surface by oil we study here the impact of injecting a hydrophilic/lipophilic surfactant into the droplet or into the surrounding oil reservoir. Contact angle goniometery, Grazing angle FTIR spectroscopy and Atomic force microscopy are used to record the oil/water interfacial tension, surface energetics of the substrate under the oil and water phases as well as the corresponding physical states of the substrates. Such energetics reflect the rate at which the excess surfactant molecules accumulate at the water/oil interface and desorb into the phases. The molecules diffuse into the substrate from the phases and build up specific molecular configurations which, with the interfacial tension, control the non-equilibrium progress of and the equilibrium status of the contact line. The study shows that the most efficient replacement of water by the surrounding oil happens when a surfactant is sparingly soluble in the supplier oil phase and highly soluble in the recipient water phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bismuth vanadate (Bi2VO5.5, BVO) thin films have been deposited by a pulsed laser ablation technique on platinized silicon substrates. The surface morphology of the BVO thin films has been studied by atomic force microscopy (AFM). The optical properties of the BVO thin films were investigated using spectroscopic ellipsometric measurements in the 300–820 nm wavelength range. The refractive index (n), extinction coefficient (k) and thickness of the BVO thin films have been obtained by fitting the ellipsometric experimental data in a four-phase model (air/BVOrough/BVO/Pt). The values of the optical constants n and k that were determined through multilayer analysis at 600 nm were 2.31 and 0.056, respectively. For fitting the ellipsometric data and to interpret the optical constants, the unknown dielectric function of the BVO films was constructed using a Lorentz model. The roughness of the films was modeled in the Brugmann effective medium approximation and the results were compared with the AFM observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanocrystalline Zn1-xMnxS films (x=0.04, 0.08 and 0.12) were deposited on glass substrates at 400 K using a simple resistive thermal evaporation technique. All the deposited films were characterized by chemical, structural, morphological, optical and magnetic properties. Scanning electron microscopy and atomic force microscopy studies showed that all the films investigated were in nanocrystalline form with the grain size lying in the range 10–20 nm. All the films exhibited cubic structure and the lattice parameters increase linearly with composition. The absorption edge shifted from the higher-wavelength region to lower wavelengths with increase in Mn concentration. The magnetization increased sharply with increase of the Mn content up to x=0.08 and then decreased with further increase of the Mn content. Particularly, Zn0.92Mn0.08S concentration samples show a weak ferromagnetic nature, which might be the optimum concentration for optoelectronic and spintronic device applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis concerns the dynamics of nanoparticle impacts on solid surfaces. These impacts occur, for instance, in space, where micro- and nanometeoroids hit surfaces of planets, moons, and spacecraft. On Earth, materials are bombarded with nanoparticles in cluster ion beam devices, in order to clean or smooth their surfaces, or to analyse their elemental composition. In both cases, the result depends on the combined effects of countless single impacts. However, the dynamics of single impacts must be understood before the overall effects of nanoparticle radiation can be modelled. In addition to applications, nanoparticle impacts are also important to basic research in the nanoscience field, because the impacts provide an excellent case to test the applicability of atomic-level interaction models to very dynamic conditions. In this thesis, the stopping of nanoparticles in matter is explored using classical molecular dynamics computer simulations. The materials investigated are gold, silicon, and silica. Impacts on silicon through a native oxide layer and formation of complex craters are also simulated. Nanoparticles up to a diameter of 20 nm (315000 atoms) were used as projectiles. The molecular dynamics method and interatomic potentials for silicon and gold are examined in this thesis. It is shown that the displacement cascade expansionmechanism and crater crown formation are very sensitive to the choice of atomic interaction model. However, the best of the current interatomic models can be utilized in nanoparticle impact simulation, if caution is exercised. The stopping of monatomic ions in matter is understood very well nowadays. However, interactions become very complex when several atoms impact on a surface simultaneously and within a short distance, as happens in a nanoparticle impact. A high energy density is deposited in a relatively small volume, which induces ejection of material and formation of a crater. Very high yields of excavated material are observed experimentally. In addition, the yields scale nonlinearly with the cluster size and impact energy at small cluster sizes, whereas in macroscopic hypervelocity impacts, the scaling 2 is linear. The aim of this thesis is to explore the atomistic mechanisms behind the nonlinear scaling at small cluster sizes. It is shown here that the nonlinear scaling of ejected material yield disappears at large impactor sizes because the stopping mechanism of nanoparticles gradually changes to the same mechanism as in macroscopic hypervelocity impacts. The high yields at small impactor size are due to the early escape of energetic atoms from the hot region. In addition, the sputtering yield is shown to depend very much on the spatial initial energy and momentum distributions that the nanoparticle induces in the material in the first phase of the impact. At the later phases, the ejection of material occurs by several mechanisms. The most important mechanism at high energies or at large cluster sizes is atomic cluster ejection from the transient liquid crown that surrounds the crater. The cluster impact dynamics detected in the simulations are in agreement with several recent experimental results. In addition, it is shown that relatively weak impacts can induce modifications on the surface of an amorphous target over a larger area than was previously expected. This is a probable explanation for the formation of the complex crater shapes observed on these surfaces with atomic force microscopy. Clusters that consist of hundreds of thousands of atoms induce long-range modifications in crystalline gold.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The optical properties of Bi(2)V(1-x)MnxO(5.5-x) (x=0.05, 0.1, 0.15 and 0.2 at.%) thin films fabricated by pulsed laser deposition on platinized Silicon Substrates were Studied in UV-visible spectral region (1.51-4.17 CV) using spectroscopic ellipsometry. The optical constants and thicknesses of these films have been obtained by fitting the ellipsometric data (Psi and Delta) using a multilayer four-phase model system and a relaxed Lorentz oscillator dispersion relation. The surface roughness and film thickness obtained by spectroscopic ellipsometry were found to be consistent with the results obtained by atomic force and scanning electron microscopy. The refractive index measured at 650 nm does not show any marginal increase with Mn content. Further, the extinction coefficient does not show much decrease with increasing Mn content. An increase in optical band gap energy from 2.52 to 2.77 eV with increasing Mn Content from x = 0.05 to 0.15 was attributed to the increase in oxygen ion vacancy disorder. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin films of antimony-doped tin oxide (SnO2:Sb) were prepared by spray pyrolysis using stannous chloride (SnCl2) and antimony trichloride (SbCl3) as precursors. The antimony doping was varied from 0 to 4 wt%. Scanning electron microscopy (SEM) revealed the surface morphology to be very smooth, yet grainy in nature. X-ray diffraction (XRD) shows films to have preferred orientation, which varies with the extent of antimony doping: undoped films prefer the (2 1 1) orientation, while the (3 0 1) orientation is preferred for doping levels of 0.5 and 1.0 wt%. For higher doping levels, the (2 0 0) orientation is preferred. This difference in preferred orientations is reflected in the SEM of the films. Atomic force microscopy (AFM) reveals that film roughness is not affected by antimony doping. The minimum sheet resistance (2.17 ohm/square) achieved in the present study is lower than values reported to date in SnO2:Sb films prepared from SnCl2 precursor. The Hall mobility of undoped SnO2 films was found to be 109.52 cm(2)/V s, which reduces to 2.55 cm(2)/ Vs for the films doped with 4 wt% of Sb. On the other hand, the carrier concentration, which is 1.23 x 10(19) cm(-3) in undoped films, increases to 2.89 x 10(21) cm(-3) for the films doped with 4 wt% of Sb. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Protein modification via enzymatic cross-linking is an attractive way for altering food structure so as to create products with increased quality and nutritional value. These modifications are expected to affect not only the structure and physico-chemical properties of proteins but also their physiological characteristics, such as digestibility in the GI-tract and allergenicity. Protein cross-linking enzymes such as transglutaminases are currently commercially available, but also other types of cross-linking enzymes are being explored intensively. In this study, enzymatic cross-linking of β-casein, the most abundant bovine milk protein, was studied. Enzymatic cross-linking reactions were performed by fungal Trichoderma reesei tyrosinase (TrTyr) and the performance of the enzyme was compared to that of transglutaminase from Streptoverticillium mobaraense (Tgase). Enzymatic cross-linking reactions were followed by different analytical techniques, such as size exclusion chromatography -Ultra violet/Visible multi angle light scattering (SEC-UV/Vis-MALLS), phosphorus nuclear magnetic resonance spectroscopy (31P-NMR), atomic force (AFM) and matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF MS). The research results showed that in both cases cross-linking of β-casein resulted in the formation of high molecular mass (MM ca. 1 350 kg mol-1), disk-shaped nanoparticles when the highest enzyme dosage and longest incubation times were used. According to SEC-UV/Vis-MALLS data, commercial β-casein was cross-linked almost completely when TrTyr and Tgase were used as cross-linking enzymes. In the case of TrTyr, high degree of cross-linking was confirmed by 31P-NMR where it was shown that 91 % of the tyrosine side-chains were involved in the cross-linking. The impact of enzymatic cross-linking of β-casein on in vitro digestibility by pepsin was followed by various analytical techniques. The research results demonstrated that enzymatically cross-linked β-casein was stable under the acidic conditions present in the stomach. Furthermore, it was found that cross-linked β-casein was more resistant to pepsin digestion when compared to that of non modified β-casein. The effects of enzymatic cross-linking of β-casein on allergenicity were also studied by different biochemical test methods. On the basis of the research results, enzymatic cross-linking decreased allergenicity of native β-casein by 14 % when cross-linked by TrTyr and by 6 % after treatment by Tgase. It can be concluded that in addition to the basic understanding of the reaction mechanism of TrTyr on protein matrix, the research results obtained in this study can have high impact on various applications like food, cosmetic, medical, textile and packing sectors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A reversible drug delivery system based on spontaneous deposition of a model protein into preformed microcapsules has been demonstrated for protein delivery applications. Layer-by-Layer assembly of poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) onto polystyrene sulfonate (PSS) doped CaCO3 particles, followed by core removal yielded intact hollow microcapsules having a unique property to induce spontaneous deposition of bovine serum albumin (BSA) at pH below its isoelectric point of 4.8, where it was positively charged. These capsules showed reversible pH dependent open and closed states to fluorescence labeled dextran (FITC-Dextran) and BSA (FITC-BSA). The loading capacity of BSA increased from 9.1 x 10(7) to 2.03 x 10(8) molecules per capsule with decrease in pH from 4.5 to 3.The loading of BSA-FITC was observed by confocal laser scanning microscopy (CLSM), which showed homogeneous distribution of protein inside the capsule. Efficient loading of BSA was further confirmed by atomic force microscopy (AFM) and scanning electron microscopy (SEM).The interior capsule concentration was as high as 209 times the feeding concentration when the feeding concentration was increased from 1 to 10 mg/ml. The deposition was initially controlled by spontaneous loading mechanism at lower BSA concentration followed by diffusion controlled loading at higher concentration; which decreased the loading efficiency from 35% to 7%. Circular dichroism (CD) measurements and Fourier transform infrared spectroscopy (FTIR) confirmed that there was no significant change in conformation of released BSA in comparison with native BSA. The release was initially burst in the first 0.5 h and sustained up to 5 h. The hollow capsules were found to be biocompatible with mouse embryonic fibroblast (MEF) cells during in vitro cell culture studies. Thus these pH sensitive polyelectrolyte microcapsules may offer a promising delivery system for water soluble proteins and peptides. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we report a novel approach for glucose-triggered anticancer drug delivery from the self-assembly of neutral poly(vinyln alcohol) (PVA) and chitosan. In the present study, we have fabricated multilayer thin film of PVA-borate and chitosan on colloidal particle (MF particle) and monitored the layer-by-layer growth using Zetapotential measurements. Formation of multilayer membrane on MF particle has been further characterized with transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Subsequently,disintegration of multilayer thin film and microcapsules was observed in presence of glucose. We investigated the disassembly of PVA-borate and chitosan self-assembly under CLSM and atomic force microscopy. These results suggest that this multilayer thin film is very efficient for encapsulation and release of DOX molecules above certain concentration of glucose (25 mM). This glucose-sensitive self-assembly is relevant for the application of anticancer therapeutic drug delivery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

TiO2 thin films have been deposited on glass and indium tin oxide (ITO) coated glass substrates by sol-gel technique. the influence of annealing temperature on the structural , morphological and optical properties has been examined. X-ray diffraction (XRD) results reveal the amorphous nature of the as-deposited film whereas the annealed films are found to be in the crystalline anatase phase. The surface morphology of the films at different annealing temperatures has been examined by atomic force microscopy (AFM). The in situ surface morphology of the as-deposited and annealed TiO2 films has also been examined by optical polaromicrograph (OPM). TiO2 films infatuated different structural and surface features with variation of annealing temperature. The optical studies on these films suggest their possible usage in sun-shielding applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atomic force microscopy investigations on swift heavy ion (200 MeV An) irradiated surfaces of a high T-c single crystal YBa2Cu3O7-delta are presented. Results obtained revealed an ion-induced erosion/sputtering clearly confirming our earlier observation on grain boundary dominated thin films. Apart from sputtering, notable effects were seen with many defect structures like dikes/hillocks surrounded by craters, dikes, holes, pearl like structures and ripple formation of sub-micron undulations, all in one crystal. Results are discussed in the light of co-operative phenomena of material re-distribution mechanism related to mass transfer and crater formations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

InN quantum dots (QDs) were fabricated on Si(111) substrate by droplet epitaxy using an RF plasma-assisted MBE system. Variation of the growth parameters, such as growth temperature and deposition time, allowed us to control the characteristic size and density of the QDs. As the growth temperature was increased from 100 C to 300 degrees C, an enlargement of QD size and a drop in dot density were observed, which was led by the limitation of surface diffusion of adatoms with the limited thermal energy. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to assess the QDs size and density. The chemical bonding configurations of InN QDs were examined by X-ray photo-electron spectroscopy (XPS). Fourier transform infrared (FTIR) spectrum of the deposited InN QDs shows the presence of In-N bond. Temperature-dependent photoluminescence (PL) measurements showed that the emission peak energies of the InN QDs are sensitive to temperature and show a strong peak emission at 0.79 eV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This Article addresses the formation of chiral supramolecular structures in the organogels derived from chiral organogelator 1R (or 2R), and its mixtures with its enantiomer (1S) and achiral analogue 3 by extensive circular dichroism (CD) spectroscopic measurements. Morphological analysis by atomic force microscopy (AFM) and scanning electron microscopy (SEM) were complemented by the measurements of their bulk properties by thermal stability and rheological studies. Specific molecular recognition events (1/3 vs 2/3) and solvent effects (isooctane vs dodecane) were found to be critical in the formation of chiral aggregates. Theoretical studies were also carried out to understand the interactions responsible for the formation of the superstructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bismuth vanadate (BVO) thin films were fabricated on indium tin oxide (ITO) coated glass substrates using pulsed laser ablation technique and investigated their structural, optical and electrical properties. The use of the indium tin oxide coated glass substrate resulted in reducing the leakage current characteristics of crystalline BVO thin films. The X-ray diffraction (XRD) studies confirmed the monophasic nature of the post annealed (500 A degrees C/1 h) films. The atomic force microscopy indicated the homogeneous distribution of crystallites in the as-deposited films. The as-deposited and the post annealed films were almost 90% transparent (380-900 nm) as confirmed by optical transmission studies. Dielectric constant of around 52 was attained accompanied by the low dielectric loss of 0.002 at 10 kHz for post annealed films. The leakage current of the post annealed BVO films on ITO coated glass substrates measured at room temperature was 8.1 x 10(-8) A at an applied electric field of 33 kV/cm, which was lower than that of the films with platinum and SrRuO3 as the bottom electrodes.