843 resultados para Artificial intelligence algorithms


Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes a new technique referred to as watched subgraphs which improves the performance of BBMC, a leading state of the art exact maximum clique solver (MCP). It is based on watched literals employed by modern SAT solvers for boolean constraint propagation. In efficient SAT algorithms, a list of clauses is kept for each literal (it is said that the clauses watch the literal) so that only those in the list are checked for constraint propagation when a (watched) literal is assigned during search. BBMC encodes vertex sets as bit strings, a bit block representing a subset of vertices (and the corresponding induced subgraph) the size of the CPU register word. The paper proposes to watch two subgraphs of critical sets during MCP search to efficiently compute a number of basic operations. Reported results validate the approach as the size and density of problem instances rise, while achieving comparable performance in the general case.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El presente proyecto trata sobre uno de los campos más problemáticos de la inteligencia artificial, el reconocimiento facial. Algo tan sencillo para las personas como es reconocer una cara conocida se traduce en complejos algoritmos y miles de datos procesados en cuestión de segundos. El proyecto comienza con un estudio del estado del arte de las diversas técnicas de reconocimiento facial, desde las más utilizadas y probadas como el PCA y el LDA, hasta técnicas experimentales que utilizan imágenes térmicas en lugar de las clásicas con luz visible. A continuación, se ha implementado una aplicación en lenguaje C++ que sea capaz de reconocer a personas almacenadas en su base de datos leyendo directamente imágenes desde una webcam. Para realizar la aplicación, se ha utilizado una de las librerías más extendidas en cuanto a procesado de imágenes y visión artificial, OpenCV. Como IDE se ha escogido Visual Studio 2010, que cuenta con una versión gratuita para estudiantes. La técnica escogida para implementar la aplicación es la del PCA ya que es una técnica básica en el reconocimiento facial, y además sirve de base para soluciones mucho más complejas. Se han estudiado los fundamentos matemáticos de la técnica para entender cómo procesa la información y en qué se datos se basa para realizar el reconocimiento. Por último, se ha implementado un algoritmo de testeo para poder conocer la fiabilidad de la aplicación con varias bases de datos de imágenes faciales. De esta forma, se puede comprobar los puntos fuertes y débiles del PCA. ABSTRACT. This project deals with one of the most problematic areas of artificial intelligence, facial recognition. Something so simple for human as to recognize a familiar face becomes into complex algorithms and thousands of data processed in seconds. The project begins with a study of the state of the art of various face recognition techniques, from the most used and tested as PCA and LDA, to experimental techniques that use thermal images instead of the classic visible light images. Next, an application has been implemented in C + + language that is able to recognize people stored in a database reading images directly from a webcam. To make the application, it has used one of the most outstretched libraries in terms of image processing and computer vision, OpenCV. Visual Studio 2010 has been chosen as the IDE, which has a free student version. The technique chosen to implement the software is the PCA because it is a basic technique in face recognition, and also provides a basis for more complex solutions. The mathematical foundations of the technique have been studied to understand how it processes the information and which data are used to do the recognition. Finally, an algorithm for testing has been implemented to know the reliability of the application with multiple databases of facial images. In this way, the strengths and weaknesses of the PCA can be checked.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La minería de datos es un campo de las ciencias de la computación referido al proceso que intenta descubrir patrones en grandes volúmenes de datos. La minería de datos busca generar información similar a la que podría producir un experto humano. Además es el proceso de descubrir conocimientos interesantes, como patrones, asociaciones, cambios, anomalías y estructuras significativas a partir de grandes cantidades de datos almacenadas en bases de datos, data warehouses o cualquier otro medio de almacenamiento de información. El aprendizaje automático o aprendizaje de máquinas es una rama de la Inteligencia artificial cuyo objetivo es desarrollar técnicas que permitan a las computadoras aprender. De forma más concreta, se trata de crear programas capaces de generalizar comportamientos a partir de una información no estructurada suministrada en forma de ejemplos. La minería de datos utiliza métodos de aprendizaje automático para descubrir y enumerar patrones presentes en los datos. En los últimos años se han aplicado las técnicas de clasificación y aprendizaje automático en un número elevado de ámbitos como el sanitario, comercial o de seguridad. Un ejemplo muy actual es la detección de comportamientos y transacciones fraudulentas en bancos. Una aplicación de interés es el uso de las técnicas desarrolladas para la detección de comportamientos fraudulentos en la identificación de usuarios existentes en el interior de entornos inteligentes sin necesidad de realizar un proceso de autenticación. Para comprobar que estas técnicas son efectivas durante la fase de análisis de una determinada solución, es necesario crear una plataforma que de soporte al desarrollo, validación y evaluación de algoritmos de aprendizaje y clasificación en los entornos de aplicación bajo estudio. El proyecto planteado está definido para la creación de una plataforma que permita evaluar algoritmos de aprendizaje automático como mecanismos de identificación en espacios inteligentes. Se estudiarán tanto los algoritmos propios de este tipo de técnicas como las plataformas actuales existentes para definir un conjunto de requisitos específicos de la plataforma a desarrollar. Tras el análisis se desarrollará parcialmente la plataforma. Tras el desarrollo se validará con pruebas de concepto y finalmente se verificará en un entorno de investigación a definir. ABSTRACT. The data mining is a field of the sciences of the computation referred to the process that it tries to discover patterns in big volumes of information. The data mining seeks to generate information similar to the one that a human expert might produce. In addition it is the process of discovering interesting knowledge, as patterns, associations, changes, abnormalities and significant structures from big quantities of information stored in databases, data warehouses or any other way of storage of information. The machine learning is a branch of the artificial Intelligence which aim is to develop technologies that they allow the computers to learn. More specifically, it is a question of creating programs capable of generalizing behaviors from not structured information supplied in the form of examples. The data mining uses methods of machine learning to discover and to enumerate present patterns in the information. In the last years there have been applied classification and machine learning techniques in a high number of areas such as healthcare, commercial or security. A very current example is the detection of behaviors and fraudulent transactions in banks. An application of interest is the use of the techniques developed for the detection of fraudulent behaviors in the identification of existing Users inside intelligent environments without need to realize a process of authentication. To verify these techniques are effective during the phase of analysis of a certain solution, it is necessary to create a platform that support the development, validation and evaluation of algorithms of learning and classification in the environments of application under study. The project proposed is defined for the creation of a platform that allows evaluating algorithms of machine learning as mechanisms of identification in intelligent spaces. There will be studied both the own algorithms of this type of technologies and the current existing platforms to define a set of specific requirements of the platform to develop. After the analysis the platform will develop partially. After the development it will be validated by prove of concept and finally verified in an environment of investigation that would be define.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Assessing video quality is a complex task. While most pixel-based metrics do not present enough correlation between objective and subjective results, algorithms need to correspond to human perception when analyzing quality in a video sequence. For analyzing the perceived quality derived from concrete video artifacts in determined region of interest we present a novel methodology for generating test sequences which allow the analysis of impact of each individual distortion. Through results obtained after subjective assessment it is possible to create psychovisual models based on weighting pixels belonging to different regions of interest distributed by color, position, motion or content. Interesting results are obtained in subjective assessment which demonstrates the necessity of new metrics adapted to human visual system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Emotion is generally argued to be an influence on the behavior of life systems, largely concerning flexibility and adaptivity. The way in which life systems acts in response to a particular situations of the environment, has revealed the decisive and crucial importance of this feature in the success of behaviors. And this source of inspiration has influenced the way of thinking artificial systems. During the last decades, artificial systems have undergone such an evolution that each day more are integrated in our daily life. They have become greater in complexity, and the subsequent effects are related to an increased demand of systems that ensure resilience, robustness, availability, security or safety among others. All of them questions that raise quite a fundamental challenges in control design. This thesis has been developed under the framework of the Autonomous System project, a.k.a the ASys-Project. Short-term objectives of immediate application are focused on to design improved systems, and the approaching of intelligence in control strategies. Besides this, long-term objectives underlying ASys-Project concentrate on high order capabilities such as cognition, awareness and autonomy. This thesis is placed within the general fields of Engineery and Emotion science, and provides a theoretical foundation for engineering and designing computational emotion for artificial systems. The starting question that has grounded this thesis aims the problem of emotion--based autonomy. And how to feedback systems with valuable meaning has conformed the general objective. Both the starting question and the general objective, have underlaid the study of emotion, the influence on systems behavior, the key foundations that justify this feature in life systems, how emotion is integrated within the normal operation, and how this entire problem of emotion can be explained in artificial systems. By assuming essential differences concerning structure, purpose and operation between life and artificial systems, the essential motivation has been the exploration of what emotion solves in nature to afterwards analyze analogies for man--made systems. This work provides a reference model in which a collection of entities, relationships, models, functions and informational artifacts, are all interacting to provide the system with non-explicit knowledge under the form of emotion-like relevances. This solution aims to provide a reference model under which to design solutions for emotional operation, but related to the real needs of artificial systems. The proposal consists of a multi-purpose architecture that implement two broad modules in order to attend: (a) the range of processes related to the environment affectation, and (b) the range or processes related to the emotion perception-like and the higher levels of reasoning. This has required an intense and critical analysis beyond the state of the art around the most relevant theories of emotion and technical systems, in order to obtain the required support for those foundations that sustain each model. The problem has been interpreted and is described on the basis of AGSys, an agent assumed with the minimum rationality as to provide the capability to perform emotional assessment. AGSys is a conceptualization of a Model-based Cognitive agent that embodies an inner agent ESys, the responsible of performing the emotional operation inside of AGSys. The solution consists of multiple computational modules working federated, and aimed at conforming a mutual feedback loop between AGSys and ESys. Throughout this solution, the environment and the effects that might influence over the system are described as different problems. While AGSys operates as a common system within the external environment, ESys is designed to operate within a conceptualized inner environment. And this inner environment is built on the basis of those relevances that might occur inside of AGSys in the interaction with the external environment. This allows for a high-quality separate reasoning concerning mission goals defined in AGSys, and emotional goals defined in ESys. This way, it is provided a possible path for high-level reasoning under the influence of goals congruence. High-level reasoning model uses knowledge about emotional goals stability, letting this way new directions in which mission goals might be assessed under the situational state of this stability. This high-level reasoning is grounded by the work of MEP, a model of emotion perception that is thought as an analogy of a well-known theory in emotion science. The work of this model is described under the operation of a recursive-like process labeled as R-Loop, together with a system of emotional goals that are assumed as individual agents. This way, AGSys integrates knowledge that concerns the relation between a perceived object, and the effect which this perception induces on the situational state of the emotional goals. This knowledge enables a high-order system of information that provides the sustain for a high-level reasoning. The extent to which this reasoning might be approached is just delineated and assumed as future work. This thesis has been studied beyond a long range of fields of knowledge. This knowledge can be structured into two main objectives: (a) the fields of psychology, cognitive science, neurology and biological sciences in order to obtain understanding concerning the problem of the emotional phenomena, and (b) a large amount of computer science branches such as Autonomic Computing (AC), Self-adaptive software, Self-X systems, Model Integrated Computing (MIC) or the paradigm of models@runtime among others, in order to obtain knowledge about tools for designing each part of the solution. The final approach has been mainly performed on the basis of the entire acquired knowledge, and described under the fields of Artificial Intelligence, Model-Based Systems (MBS), and additional mathematical formalizations to provide punctual understanding in those cases that it has been required. This approach describes a reference model to feedback systems with valuable meaning, allowing for reasoning with regard to (a) the relationship between the environment and the relevance of the effects on the system, and (b) dynamical evaluations concerning the inner situational state of the system as a result of those effects. And this reasoning provides a framework of distinguishable states of AGSys derived from its own circumstances, that can be assumed as artificial emotion.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Los medios sociales han revolucionado la manera en la que los consumidores se relacionan entre sí y con las marcas. Las opiniones publicadas en dichos medios tienen un poder de influencia en las decisiones de compra tan importante como las campañas de publicidad. En consecuencia, los profesionales del marketing cada vez dedican mayores esfuerzos e inversión a la obtención de indicadores que permitan medir el estado de salud de las marcas a partir de los contenidos digitales generados por sus consumidores. Dada la naturaleza no estructurada de los contenidos publicados en los medios sociales, la tecnología usada para procesar dichos contenidos ha menudo implementa técnicas de Inteligencia Artificial, tales como algoritmos de procesamiento de lenguaje natural, aprendizaje automático y análisis semántico. Esta tesis, contribuye al estado de la cuestión, con un modelo que permite estructurar e integrar la información publicada en medios sociales, y una serie de técnicas cuyos objetivos son la identificación de consumidores, así como la segmentación psicográfica y sociodemográfica de los mismos. La técnica de identificación de consumidores se basa en la huella digital de los dispositivos que utilizan para navegar por la Web y es tolerante a los cambios que se producen con frecuencia en dicha huella digital. Las técnicas de segmentación psicográfica descritas obtienen la posición en el embudo de compra de los consumidores y permiten clasificar las opiniones en función de una serie de atributos de marketing. Finalmente, las técnicas de segmentación sociodemográfica permiten obtener el lugar de residencia y el género de los consumidores. ABSTRACT Social media has revolutionised the way in which consumers relate to each other and with brands. The opinions published in social media have a power of influencing purchase decisions as important as advertising campaigns. Consequently, marketers are increasing efforts and investments for obtaining indicators to measure brand health from the digital content generated by consumers. Given the unstructured nature of social media contents, the technology used for processing such contents often implements Artificial Intelligence techniques, such as natural language processing, machine learning and semantic analysis algorithms. This thesis contributes to the State of the Art, with a model for structuring and integrating the information posted on social media, and a number of techniques whose objectives are the identification of consumers, as well as their socio-demographic and psychographic segmentation. The consumer identification technique is based on the fingerprint of the devices they use to surf the Web and is tolerant to the changes that occur frequently in such fingerprint. The psychographic profiling techniques described infer the position of consumer in the purchase funnel, and allow to classify the opinions based on a series of marketing attributes. Finally, the socio-demographic profiling techniques allow to obtain the residence and gender of consumers.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El empleo de refuerzos de FRP en vigas de hormigón armado es cada vez más frecuente por sus numerosas ventajas frente a otros métodos más tradicionales. Durante los últimos años, la técnica FRP-NSM, consistente en introducir barras de FRP sobre el recubrimiento de una viga de hormigón, se ha posicionado como uno de los mejores métodos de refuerzo y rehabilitación de estructuras de hormigón armado, tanto por su facilidad de montaje y mantenimiento, como por su rendimiento para aumentar la capacidad resistente de dichas estructuras. Si bien el refuerzo a flexión ha sido ampliamente desarrollado y estudiado hasta la fecha, no sucede lo mismo con el refuerzo a cortante, debido principalmente a su gran complejidad. Sin embargo, se debería dedicar más estudio a este tipo de refuerzo si se pretenden conservar los criterios de diseño en estructuras de hormigón armado, los cuales están basados en evitar el fallo a cortante por sus consecuencias catastróficas Esta ausencia de información y de normativa es la que justifica esta tesis doctoral. En este pro-yecto se van a desarrollar dos metodologías alternativas, que permiten estimar la capacidad resistente de vigas de hormigón armado, reforzadas a cortante mediante la técnica FRP-NSM. El primer método aplicado consiste en la implementación de una red neuronal artificial capaz de predecir adecuadamente la resistencia a cortante de vigas reforzadas con este método a partir de experimentos anteriores. Asimismo, a partir de la red se han llevado a cabo algunos estudios a fin de comprender mejor la influencia real de algunos parámetros de la viga y del refuerzo sobre la resistencia a cortante con el propósito de lograr diseños más seguros de este tipo de refuerzo. Una configuración óptima de la red requiere discriminar adecuadamente de entre los numerosos parámetros (geométricos y de material) que pueden influir en el compor-tamiento resistente de la viga, para lo cual se han llevado a cabo diversos estudios y pruebas. Mediante el segundo método, se desarrolla una ecuación de proyecto que permite, de forma sencilla, estimar la capacidad de vigas reforzadas a cortante con FRP-NSM, la cual podría ser propuesta para las principales guías de diseño. Para alcanzar este objetivo, se plantea un pro-blema de optimización multiobjetivo a partir de resultados de ensayos experimentales llevados a cabo sobre vigas de hormigón armado con y sin refuerzo de FRP. El problema multiobjetivo se resuelve mediante algoritmos genéticos, en concreto el algoritmo NSGA-II, por ser más apropiado para problemas con varias funciones objetivo que los métodos de optimización clásicos. Mediante una comparativa de las predicciones realizadas con ambos métodos y de los resulta-dos de ensayos experimentales se podrán establecer las ventajas e inconvenientes derivadas de la aplicación de cada una de las dos metodologías. Asimismo, se llevará a cabo un análisis paramétrico con ambos enfoques a fin de intentar determinar la sensibilidad de aquellos pa-rámetros más sensibles a este tipo de refuerzo. Finalmente, se realizará un análisis estadístico de la fiabilidad de las ecuaciones de diseño deri-vadas de la optimización multiobjetivo. Con dicho análisis se puede estimar la capacidad resis-tente de una viga reforzada a cortante con FRP-NSM dentro de un margen de seguridad espe-cificado a priori. ABSTRACT The use of externally bonded (EB) fibre-reinforced polymer (FRP) composites has gained acceptance during the last two decades in the construction engineering community, particularly in the rehabilitation of reinforced concrete (RC) structures. Currently, to increase the shear resistance of RC beams, FRP sheets are externally bonded (EB-FRP) and applied on the external side surface of the beams to be strengthened with different configurations. Of more recent application, the near-surface mounted FRP bar (NSM-FRP) method is another technique successfully used to increase the shear resistance of RC beams. In the NSM method, FRP rods are embedded into grooves intentionally prepared in the concrete cover of the side faces of RC beams. While flexural strengthening has been widely developed and studied so far, the same doesn´t occur to shearing strength mainly due to its great complexity. Nevertheless, if design criteria are to be preserved more research should be done to this sort of strength, which are based on avoiding shear failure and its catastrophic consequences. However, in spite of this, accurately calculating the shear capacity of FRP shear strengthened RC beams remains a complex challenge that has not yet been fully resolved due to the numerous variables involved in the procedure. The objective of this Thesis is to develop methodologies to evaluate the capacity of FRP shear strengthened RC beams by dealing with the problem from a different point of view to the numerical modeling approach by using artificial intelligence techniques. With this purpose two different approaches have been developed: one concerned with the use of artificial neural networks and the other based on the implementation of an optimization approach developed jointly with the use of artificial neural networks (ANNs) and solved with genetic algorithms (GAs). With these approaches some of the difficulties concerned regarding the numerical modeling can be overcome. As an alternative tool to conventional numerical techniques, neural networks do not provide closed form solutions for modeling problems but do, however, offer a complex and accurate solution based on a representative set of historical examples of the relationship. Furthermore, they can adapt solutions over time to include new data. On the other hand, as a second proposal, an optimization approach has also been developed to implement simple yet accurate shear design equations for this kind of strengthening. This approach is developed in a multi-objective framework by considering experimental results of RC beams with and without NSM-FRP. Furthermore, the results obtained with the previous scheme based on ANNs are also used as a filter to choose the parameters to include in the design equations. Genetic algorithms are used to solve the optimization problem since they are especially suitable for solving multi-objective problems when compared to standard optimization methods. The key features of the two proposed procedures are outlined and their performance in predicting the capacity of NSM-FRP shear strengthened RC beams is evaluated by comparison with results from experimental tests and with predictions obtained using a simplified numerical model. A sensitivity study of the predictions of both models for the input parameters is also carried out.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Os smart grids representam a nova geração dos sistemas elétricos de potência, combinando avanços em computação, sistemas de comunicação, processos distribuídos e inteligência artificial para prover novas funcionalidades quanto ao acompanhamento em tempo real da demanda e do consumo de energia elétrica, gerenciamento em larga escala de geradores distribuídos, entre outras, a partir de um sistema de controle distribuído sobre a rede elétrica. Esta estrutura modifica profundamente a maneira como se realiza o planejamento e a operação de sistemas elétricos nos dias de hoje, em especial os de distribuição, e há interessantes possibilidades de pesquisa e desenvolvimento possibilitada pela busca da implementação destas funcionalidades. Com esse cenário em vista, o presente trabalho utiliza uma abordagem baseada no uso de sistemas multiagentes para simular esse tipo de sistema de distribuição de energia elétrica, considerando opções de controle distintas. A utilização da tecnologia de sistemas multiagentes para a simulação é baseada na conceituação de smart grids como um sistema distribuído, algo também realizado nesse trabalho. Para validar a proposta, foram simuladas três funcionalidades esperadas dessas redes elétricas: classificação de cargas não-lineares; gerenciamento de perfil de tensão; e reconfiguração topológica com a finalidade de reduzir as perdas elétricas. Todas as modelagens e desenvolvimentos destes estudos estão aqui relatados. Por fim, o trabalho se propõe a identificar os sistemas multiagentes como uma tecnologia a ser empregada tanto para a pesquisa, quanto para implementação dessas redes elétricas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A avaliação perceptivo-auditiva tem papel fundamental no estudo e na avaliação da voz, no entanto, por ser subjetiva está sujeita a imprecisões e variações. Por outro lado, a análise acústica permite a reprodutibilidade de resultados, porém precisa ser aprimorada, pois não analisa com precisão vozes com disfonias mais intensas e com ondas caóticas. Assim, elaborar medidas que proporcionem conhecimentos confiáveis em relação à função vocal resulta de uma necessidade antiga dentro desta linha de pesquisa e atuação clínica. Neste contexto, o uso da inteligência artificial, como as redes neurais artificiais, indica ser uma abordagem promissora. Objetivo: Validar um sistema automático utilizando redes neurais artificiais para a avaliação de vozes rugosas e soprosas. Materiais e métodos: Foram selecionadas 150 vozes, desde neutras até com presença em grau intenso de rugosidade e/ou soprosidade, do banco de dados da Clínica de Fonoaudiologia da Faculdade de Odontologia de Bauru (FOB/USP). Dessas vozes, 23 foram excluídas por não responderem aos critérios de inclusão na amostra, assim utilizaram-se 123 vozes. Procedimentos: avaliação perceptivo-auditiva pela escala visual analógica de 100 mm e pela escala numérica de quatro pontos; extração de características do sinal de voz por meio da Transformada Wavelet Packet e dos parâmetros acústicos: jitter, shimmer, amplitude da derivada e amplitude do pitch; e validação do classificador por meio da parametrização, treino, teste e avaliação das redes neurais artificiais. Resultados: Na avaliação perceptivo-auditiva encontrou-se, por meio do teste Coeficiente de Correlação Intraclasse (CCI), concordâncias inter e intrajuiz excelentes, com p = 0,85 na concordância interjuízes e p variando de 0,87 a 0,93 nas concordâncias intrajuiz. Em relação ao desempenho da rede neural artificial, na discriminação da soprosidade e da rugosidade e dos seus respectivos graus, encontrou-se o melhor desempenho para a soprosidade no subconjunto composto pelo jitter, amplitude do pitch e frequência fundamental, no qual obteve-se taxa de acerto de 74%, concordância excelente com a avaliação perceptivo-auditiva da escala visual analógica (0,80 no CCI) e erro médio de 9 mm. Para a rugosidade, o melhor subconjunto foi composto pela Transformada Wavelet Packet com 1 nível de decomposição, jitter, shimmer, amplitude do pitch e frequência fundamental, no qual obteve-se 73% de acerto, concordância excelente (0,84 no CCI), e erro médio de 10 mm. Conclusão: O uso da inteligência artificial baseado em redes neurais artificiais na identificação, e graduação da rugosidade e da soprosidade, apresentou confiabilidade excelente (CCI > 0,80), com resultados semelhantes a concordância interjuízes. Dessa forma, a rede neural artificial revela-se como uma metodologia promissora de avaliação vocal, tendo sua maior vantagem a objetividade na avaliação.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A teoria de Jean Piaget sobre o desenvolvimento da inteligência tem sido utilizada na área de inteligência computacional como inspiração para a proposição de modelos de agentes cognitivos. Embora os modelos propostos implementem aspectos básicos importantes da teoria de Piaget, como a estrutura do esquema cognitivo, não consideram o problema da fundamentação simbólica e, portanto, não se preocupam com os aspectos da teoria que levam à aquisição autônoma da semântica básica para a organização cognitiva do mundo externo, como é o caso da aquisição da noção de objeto. Neste trabalho apresentamos um modelo computacional de esquema cognitivo inspirado na teoria de Piaget sobre a inteligência sensório-motora que se desenvolve autonomamente construindo mecanismos por meio de princípios computacionais pautados pelo problema da fundamentação simbólica. O modelo de esquema proposto tem como base a classificação de situações sensório-motoras utilizadas para a percepção, captação e armazenamento das relações causais determiníscas de menor granularidade. Estas causalidades são então expandidas espaço-temporalmente por estruturas mais complexas que se utilizam das anteriores e que também são projetadas de forma a possibilitar que outras estruturas computacionais autônomas mais complexas se utilizem delas. O modelo proposto é implementado por uma rede neural artificial feed-forward cujos elementos da camada de saída se auto-organizam para gerar um grafo sensóriomotor objetivado. Alguns mecanismos computacionais já existentes na área de inteligência computacional foram modificados para se enquadrarem aos paradigmas de semântica nula e do desenvolvimento mental autônomo, tomados como base para lidar com o problema da fundamentação simbólica. O grafo sensório-motor auto-organizável que implementa um modelo de esquema inspirado na teoria de Piaget proposto neste trabalho, conjuntamente com os princípios computacionais utilizados para sua concepção caminha na direção da busca pelo desenvolvimento cognitivo artificial autônomo da noção de objeto.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

É importante que as redes elétricas tenham altos índices de confiabilidade, de forma a se manter a agilidade e a manutenção ideais para um melhor funcionamento. Por outro lado, o crescimento inesperado da carga, falhas em equipamentos e uma parametrização inadequada das funções de proteção tornam a análise de eventos de proteção mais complexas e demoradas. Além disso, a quantidade de informações que pode ser obtida de relés digitais modernos tem crescido constantemente. Para que seja possível uma rápida tomada de decisão e manutenção, esse projeto de pesquisa teve como objetivo a implementação de um sistema completo de diagnóstico que é ativado automaticamente quando um evento de proteção ocorrer. As informações a serem analisadas são obtidas de uma base de dados e de relés de proteção, via protocolo de comunicação IEC 61850 e arquivos de oscilografia. O trabalho aborda o sistema Smart Grid completo incluindo: a aquisição de dados nos relés, detalhando o sistema de comunicação desenvolvido através de um software com um cliente IEC61850 e um servidor OPC e um software com um cliente OPC, que é ativado por eventos configurados para dispará-lo (por exemplo, atuação da proteção); o sistema de pré-tratamento de dados, onde os dados provenientes dos relés e equipamentos de proteção são filtrados, pré-processados e formatados; e o sistema de diagnóstico. Um banco de dados central mantém atualizados os dados de todas essas etapas. O sistema de diagnóstico utiliza algoritmos convencionais e técnicas de inteligência artificial, em particular, um sistema especialista. O sistema especialista foi desenvolvido para lidar com diferentes conjuntos de dados de entrada e com uma possível falta de dados, sempre garantindo a entrega de diagnósticos. Foram realizados testes e simulações para curtos-circuitos (trifásico, dupla-fase, dupla-fase-terra e fase-terra) em alimentadores, transformadores e barras de uma subestação. Esses testes incluíram diferentes estados do sistema de proteção (funcionamento correto e impróprio). O sistema se mostrou totalmente eficaz tanto no caso de disponibilidade completa quanto parcial de informações, sempre fornecendo um diagnóstico do curto-circuito e analisando o funcionamento das funções de proteção da subestação. Dessa forma, possibilita-se uma manutenção muito mais eficiente pelas concessionárias de energia, principalmente no que diz respeito à prevenção de defeitos em equipamentos, rápida resposta a problemas, e necessidade de reparametrização das funções de proteção. O sistema foi instalado com sucesso em uma subestação de distribuição da Companhia Paulista de Força e Luz.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cette thèse contribue a la recherche vers l'intelligence artificielle en utilisant des méthodes connexionnistes. Les réseaux de neurones récurrents sont un ensemble de modèles séquentiels de plus en plus populaires capable en principe d'apprendre des algorithmes arbitraires. Ces modèles effectuent un apprentissage en profondeur, un type d'apprentissage machine. Sa généralité et son succès empirique en font un sujet intéressant pour la recherche et un outil prometteur pour la création de l'intelligence artificielle plus générale. Le premier chapitre de cette thèse donne un bref aperçu des sujets de fonds: l'intelligence artificielle, l'apprentissage machine, l'apprentissage en profondeur et les réseaux de neurones récurrents. Les trois chapitres suivants couvrent ces sujets de manière de plus en plus spécifiques. Enfin, nous présentons quelques contributions apportées aux réseaux de neurones récurrents. Le chapitre \ref{arxiv1} présente nos travaux de régularisation des réseaux de neurones récurrents. La régularisation vise à améliorer la capacité de généralisation du modèle, et joue un role clé dans la performance de plusieurs applications des réseaux de neurones récurrents, en particulier en reconnaissance vocale. Notre approche donne l'état de l'art sur TIMIT, un benchmark standard pour cette tâche. Le chapitre \ref{cpgp} présente une seconde ligne de travail, toujours en cours, qui explore une nouvelle architecture pour les réseaux de neurones récurrents. Les réseaux de neurones récurrents maintiennent un état caché qui représente leurs observations antérieures. L'idée de ce travail est de coder certaines dynamiques abstraites dans l'état caché, donnant au réseau une manière naturelle d'encoder des tendances cohérentes de l'état de son environnement. Notre travail est fondé sur un modèle existant; nous décrivons ce travail et nos contributions avec notamment une expérience préliminaire.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cette thèse contribue a la recherche vers l'intelligence artificielle en utilisant des méthodes connexionnistes. Les réseaux de neurones récurrents sont un ensemble de modèles séquentiels de plus en plus populaires capable en principe d'apprendre des algorithmes arbitraires. Ces modèles effectuent un apprentissage en profondeur, un type d'apprentissage machine. Sa généralité et son succès empirique en font un sujet intéressant pour la recherche et un outil prometteur pour la création de l'intelligence artificielle plus générale. Le premier chapitre de cette thèse donne un bref aperçu des sujets de fonds: l'intelligence artificielle, l'apprentissage machine, l'apprentissage en profondeur et les réseaux de neurones récurrents. Les trois chapitres suivants couvrent ces sujets de manière de plus en plus spécifiques. Enfin, nous présentons quelques contributions apportées aux réseaux de neurones récurrents. Le chapitre \ref{arxiv1} présente nos travaux de régularisation des réseaux de neurones récurrents. La régularisation vise à améliorer la capacité de généralisation du modèle, et joue un role clé dans la performance de plusieurs applications des réseaux de neurones récurrents, en particulier en reconnaissance vocale. Notre approche donne l'état de l'art sur TIMIT, un benchmark standard pour cette tâche. Le chapitre \ref{cpgp} présente une seconde ligne de travail, toujours en cours, qui explore une nouvelle architecture pour les réseaux de neurones récurrents. Les réseaux de neurones récurrents maintiennent un état caché qui représente leurs observations antérieures. L'idée de ce travail est de coder certaines dynamiques abstraites dans l'état caché, donnant au réseau une manière naturelle d'encoder des tendances cohérentes de l'état de son environnement. Notre travail est fondé sur un modèle existant; nous décrivons ce travail et nos contributions avec notamment une expérience préliminaire.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

"Results from a search of the technical report database over a 10-year period ... references cover only unclassified, unlimited document references with abstracts."