887 resultados para Aquatic animals.
Resumo:
In this paper we present livestock breeding developments that could be taken into consideration in the genetic improvement of farmed aquaculture species, especially in freshwater fish. Firstly, the current breeding objective in aquatic species has focused almost exclusively on the improvement of body weight at harvest or on growth related traits. This is unlikely to be sufficient to meet the future needs of the aquaculture industry. To meet future demands breeding programs will most likely have to include additional traits, such as fitness related ones (survival, disease resistance), feed efficiency, or flesh quality, rather than only growth performance. In order to select for a multi-trait breeding objective, genetic variation in traits of interest and the genetic relationships among them need to be estimated. In addition, economic values for these traits will be required. Generally, there is a paucity of data on variable and fixed production costs in aquaculture, and this could be a major constraint in the further expansion of the breeding objectives. Secondly, genetic evaluation systems using the restricted maximum likelihood method (REML) and best linear unbiased prediction (BLUP) in a framework of mixed model methodology could be widely adopted to replace the more commonly used method of mass selection based on phenotypic performance. The BLUP method increases the accuracy of selection and also allows the management of inbreeding and estimation of genetic trends. BLUP is an improvement over the classic selection index approach, which was used in the success story of the genetically improved farmed tilapia (GIFT) in the Philippines, with genetic gains from 10 to 20 per cent per generation of selection. In parallel with BLUP, optimal genetic contribution theory can be applied to maximize genetic gain while constraining inbreeding in the long run in selection programs. Thirdly, by using advanced statistical methods, genetic selection can be carried out not only at the nucleus level but also in lower tiers of the pyramid breeding structure. Large scale across population genetic evaluation through genetic connectedness using cryopreserved sperm enables the comparison and ranking of genetic merit of all animals across populations, countries or years, and thus the genetically superior brood stock can be identified and widely used and exchanged to increase the rate of genetic progress in the population as a whole. It is concluded that sound genetic programs need to be established for aquaculture species. In addition to being very effective, fully pedigreed breeding programs would also enable the exploration of possibilities of integrating molecular markers (e.g., genetic tagging using DNA fingerprinting, marker (gene) assisted selection) and reproductive technologies such as in-vitro fertilization using cryopreserved spermatozoa.
Resumo:
A discussion is presented on the topic of maintaining genetic diversity in aquatic ecosystems, considering the various threats caused by irreversible damage or loss to the environment. The current situation in aquaculture and future prospects regarding the conservation and protection of endangered species are outlined, describing the case of tilapias in Africa as one particular example of fish conservation.
Resumo:
This paper summarizes some of the major issues relating to ex-situ conservation of the germplasm of aquatic organisms and gives examples of some current activities and future possibilities.
Resumo:
The role of carcass evaluation techniques in aquaculture research programs, especially in genetics, breeding, production management, feeding and nutrition, cannot be overemphasized. Knowledge of production efficiencies and growth potentials in relation to desired carcass attributes has provided an impetus to improvements in genetic selection techniques and management of aquatic food animals. Accurate, standard and uniform methods of carcass evaluation are critically important. A standard format developed for collection of data on carps is presented in this paper.
Resumo:
Quando as esterases acetilcolinesterase (AChE), butirilcolinesterase (BChE) e carboxilesterase (CarbE) hidrolisam ésteres de fosfato seus sítios ativos sofrem fosfatação inibitória. Por isto, tal fosfatação pode proteger seres vivos contra o espalhamento de xenobióticos organofosforados dentro de seus corpos, já que estas enzimas têm a capacidade de captar moléculas de pesticidas organofosforados estequiometricamente. Os organismos terrestres vivem em um ambiente com mais oxigênio do que os organismos aquáticos. Na água, quando o nível de oxigênio atinge aproximadamente 2,6 mg/L o ambiente está em hipoxia. Este fenômeno afeta ecossistemas aquáticos, uma vez que muitos organismos não conseguem se adaptar à baixa do oxigênio. Estudamos peixes em hipoxia e hiperoxia para entender melhor a bioquímica do funcionamento de suas enzimas captadoras de organofosforados quando eles estão expostos às variações físico-químicas de seus habitats. Dois grupos de no mínimo seis pacus (Piaractus mesopotamicus), seis peixes dourados (Carassius auratus auratus), seis tilápias (Oreochromis niloticus niloticus), seis piavussus (Leporinus macrocephalus), seis apaiaris (Astronotus ocellatus), ou seis carpas (Cyprinus carpio carpio) foram aclimatados à temperatura ambiente em dois aquários de 250 L. No primeiro aquário, pelo menos três animais ensaio de cada espécie sofreram hipoxia por diminuição da concentração de oxigênio até 0,5 mg/L através de borbulhamento de nitrogênio na água. Quando estes animais atingiram a hipoxia foram mantidos a 0,5 mg/L de oxigênio por 6, 8, 24 ou, no máximo, por 42 horas. Três peixes controle de cada espécie foram mantidos em normoxia (4,5 até 7,0 mg/L de oxigênio). Após estes tempos houve a retirada de cerca de 3,5 mL de sangue e dos fígados. Depois de coagular, o sangue foi centrifugado para retirada do soro sobrenadante, que foi usado como amostra para ensaios das esterases. Os fígados foram armazenados em freezer a -70 C e, no momento do ensaio, homogeneizados e centrifugados para obter as frações citosólica e microssomal. As atividades das esterases foram ensaiadas em espectrofotômetro com os substratos acetiltiocolina, butiriltiocolina ou p-nitrofenilacetato. As atividades sobre p-nitrofenilacetato (CarbE) do soro e do fígado sofreram queda em todos os exemplares das espécies submetidos à hipoxia. Tipicamente, esta atividade caiu cerca de 50% nos soros de pacus mantidos por 42 h sob concentrações de oxigênio abaixo de 1,0 mg/L. O tempo para que ocorresse a queda desta atividade enzimática variou de espécie para espécie.
Resumo:
Transfers and introductions of marine species have occurred and are occurring on a worldwide basis, largely in response to perceived needs of expanding aquaculture industries. Greatest interest is in salmon (cage rearing and ocean ranching), shrimp, and bivalve mollusks, although other organisms are being considered. Such movements of animals carry an associated risk of moving pathogens into areas where they did not occur previously, possibly resulting in infections in native species. Many case histories of the effects of introduced pathogens and parasites now exist-enough to suggest that national and international action is necessary. Viral pathogens of shrimp and salmon, as well as protozoan parasites of mollusks and nematode parasites of eels, have entered complex "transfer networks" developed by humans, and have been transported globally with their hosts in several well-documented instances. Examining the records of transfers and introductions of marine species, incomplete as they are, permits the statement of emerging principles-foremost of which is that severe disease outbreaks can result from inadequately controlled or uncontrolled movements of marine animals.
Resumo:
Aquatic agricultural systems (AAS) are systems in which the annual production dynamics of freshwater and/or coastal ecosystems contribute significantly to total household income. Improving the livelihood security and wellbeing of the estimated 250 million poor people dependent on AAS in Bangladesh, Cambodia, the Philippines, the Solomon Islands and Zambia is the goal of the Worldfish Center-led Consortium Research Program (CRP), “Harnessing the development potential of aquatic agricultural systems for development.” One component expected to contribute to sustainably achieving this goal is enhancing the gender and wider social equity of the social, economic and political systems within which the AAS function. The CRP’s focus on social equity, and particularly gender equity, responds to the limited progress to date in enhancing the inclusiveness of development outcomes through interventions that offer improved availability of resources and technologies without addressing the wider social constraints that marginalized populations face in making use of them. The CRP aims to both offer improved availability and address the wider social constraints in order to determine whether a multi-level approach that engages with individuals, households and communities, as well as the wider social, economic and political contexts in which they function, is more successful in extending development’s benefits to women and other excluded groups. Designing the research in development initiatives to test this hypothesis requires a solid understanding of each CRP country’s social, cultural and economic contexts and of the variations across them. This paper provides an initial input into developing this knowledge, based on a review of literature on agriculture, aquaculture and gender relations within the five focal countries. Before delving into the findings of the literature review, the paper first justifies the expectation that successfully achieving lasting wellbeing improvements for poor women and men dependent on AAS rests in part on advances in gender equity, and in light of this justification, presents the AAS CRP’s conceptual framew
Resumo:
Aquatic agricultural systems (AAS) are diverse production and livelihood systems where families cultivate a range of crops, raise livestock, farm or catch fish, gather fruits and other tree crops, and harness natural resources such as timber, reeds, and wildlife. Aquatic agricultural systems occur along freshwater floodplains, coastal deltas, and inshore marine waters, and are characterized by dependence on seasonal changes in productivity, driven by seasonal variation in rainfall, river flow, and/or coastal and marine processes. Despite this natural productivity, the farming, fishing, and herding communities who live in these systems are among the poorest and most vulnerable in their countries and regions. This report provides an overview of the scale and scope of development challenges in coastal aquatic agricultural systems, their significance for poor and vulnerable communities, and the opportunities for partnership and investment that support efforts of these communities to secure resilient livelihoods in the face of multiple risks.
Resumo:
This is the Species management in aquatic Habitats overview of sub projects and their management produced by the Environment Agency in 1998. This report was under the R&D Project, which it was initiated in 1995 to provide information on species of conservation value of particular relevance to the Environment Agency (then the National Rivers Authority, NRA), in relation to its activities affecting aquatic environments. Outputs comprise Species Action Plans (SAPs), practical management guidelines for Agency staff and third parties, and various research and survey outputs to improve the knowledge base on the status and ecological requirements of priority species. This R&D Technical Report provides an overview of the work undertaken, additionally identifying lessons to be learnt in the management of species-related research within the framework of the UK Biodiversity Action Plan. The process of species selection was initially based upon a wide ranging review of priority species of relevance to the then NRA, encompassing both highly threatened species and species that are relatively common but are at particular risk from Agency activities.
Resumo:
This is the Species management in aquatic Habitats WRc Dec 1993 produced by the National Rivers Authority in 1993. This report is focused on the Phase 1 of the Species Management in Aquatic Habitats, based on the Development of priority lists of rare and nuisance species for the National Rivers Authority (NRA). Certain ‘nuisance’ species cause problems for conservation by having a negative impact on more valued species or ecosystems. This project was initiated as part of a programme of research to develop strategies for the management of both rare and nuisance species. This project identified key rare and nuisance species of interest to the NRA and prioritised research needs to develop conservation strategies for these species. A combined provisional list of almost a thousand rare species, a priority list of 58 species of potential interest and a priority list of nine nuisance species was developed by a process of literature review and from suggestions by NRA conservation staff.
Resumo:
This is the Species management in aquatic Habitats WRc Nov 1993 produced by the National Rivers Authority (NRA) in 1993. This report identified key rare and nuisance species of interest to the NRA and prioritised research needs to develop conservation strategies for these species. The NRA has in the past adopted a habitat maintenance and protection approach to conservation paying less attention at individual species. There is a risk that conservation based on a habitat management policy will no further the conservation of certain species. In addition, certain ‘nuisance’ species cause problems for conservation by having a negative impact on more valued species or ecosystems. Through the combination of the review of current legislation and literature and consultation with NRA staff, this project identified key rare and nuisance species of interest to the NRA and prioritised research needs to develop conservation strategies for these species.
Resumo:
This is the Species management in aquatic Habitats WRc Interim 1997 document produced by the Environment Agency in 1997. This document reports progress on R&D Project 640, which aims to provide information on species of conservation value of particular relevance to the Environment Agency, in relation to its activities affecting aquatic environments. A range of stand-alone outputs is being produced, comprising Species Action Plans, practical management guidelines for Agency staff and third parties, and various research outputs to improve the knowledge base on the status and ecological requirements of priority species. The species of conservation values are: water shrew, daubenton’s bat, Kingfisher, yellow wagtail, Grey wagtail, sand martin, reed bunting, dipper, marsh warbler, great crested new, spined loach, brook lamprey, river lamprey, sea lamprey, shining rams-horn snail, little whirlpool rams-horn snail, depressed river mussel, a freshwater pea mussel, native crayfish, and triangular club-rush. The process of species selection was altered during the course of the project by the report on biodiversity by the UK Biodiversity Steering Group (1995). Whilst still including species that were not particularly endangered but were greatly influenced by the activities of the Agency, the project addressed species on the ‘short’ and ‘middle’ priority lists of the Biodiversity report, particularly those for which the Agency had specific responsibilities.