728 resultados para Analgesia Intrapleural
Resumo:
ObjectiveTo compare cardiac output (CO) measured by Doppler echocardiography and thermodilution techniques in spontaneously breathing dogs during continuous infusion of propofol. To do so, CO was obtained using the thermodilution method (CO(TD)) and Doppler evaluation of pulmonary flow (CO(DP)) and aortic flow (CO(DA)).Study designProspective cohort study.AnimalsEight adult dogs weighing 8.3 +/- 2.0 kg.MethodsPropofol was used for induction (7.5 +/- 1.9 mg kg-1 IV) followed by a continuous rate infusion at 0.7 mg kg-1 minute-1. The animals were positioned in left lateral recumbency on an echocardiography table that allowed for positioning of the transducer at the 3rd and 5th intercostal spaces of the left hemithorax for Doppler evaluation of pulmonary and aortic valves, respectively. CO(DP) and CO(DA) were calculated from pulmonary and aortic velocity spectra, respectively. A pulmonary artery catheter was inserted via the jugular vein and positioned inside the lumen of the pulmonary artery in order to evaluate CO(TD). The first measurement of CO(TD), CO(DP) and CO(DA) was performed 30 minutes after beginning continuous infusion (T0) and then at 15-minute intervals (T15, T30, T45 and T60). Numeric data were submitted to two-way anova for repeated measurements, Pearson's correlation coefficient and Bland & Altman analysis. Data are presented as mean +/- SD.ResultsAt T0, CO(TD) was lower than CO(DA). CO(DA) was higher than CO(TD) and CO(DP) at T30, T45 and T60. The difference between the CO(TD) and CO(DP), when all data were included, was -0.04 +/- 0.22 L minute-1 and Pearson's correlation coefficient (r) was 0.86. The difference between the CO(TD) and CO(DA) was -0.87 +/- 0.54 L minute-1 and r = 0.69. For CO(TD) and CO(DP), the difference was -0.82 +/- 0.59 L minute-1 and r = 0.61.ConclusionDoppler evaluation of pulmonary flow was a clinically acceptable method for assessing the CO in propofol-anesthetized dogs.
Resumo:
Obejective To study the echocardiographic effects of isoflurane at an end-tidal concentration approximating 1.0 times the minimum alveolar concentration (MAC) in healthy unpremedicated dogs.Study design Prospective experimental trial.Animals Sixteen mature mongrel dogs of either sex weighing 11.06 +/- 2.72 kg.Methods After performing a baseline echocardiogram in the awake animal, anesthesia was induced with increasing inspired concentrations of isoflurane via a face mask until tracheal intubation was possible. Following intubation, the end-tidal concentration was decreased to 1.4% for the rest of the anesthetic period. Serial echocardiograms were recorded at 25, 40, and 55 minutes after the end-tidal concentration was reached.Results No changes were observed in heart rate. However, significant decreases were seen in left ventricular end-diastolic diameter (Mean maximal change: 13.8%), interventricular septal thickness during systole (15.2%), interventricular septal thickening fraction (72.2%), left ventricular free wall thickening fraction (63.5%), ejection fraction (39.9%), and fractional shortening (46.7%). In addition, peak flow velocities across mitral, pulmonic, and aortic valves were significantly lower than baseline values. Decreases were also observed in end-diastolic left ventricular volume index (approximately 32.1% from the awake value), stroke index (58.2%), and cardiac index (55.3%) when compared with awake measurements.Conclusions Our results indicate that 1 x MAC isoflurane caused significant myocardial depression in healthy dogs. These changes in myocardial function need to be considered carefully when isoflurane is to be used in dogs with poor cardiovascular reserve.
Resumo:
Objective-To evaluate analgesic effects of epidurally administered neostigmine alone or in combination with morphine in dogs after ovariohysterectomy.Animals-40 healthy bitches.Procedures-After acepromazine premedication, anesthesia was induced. Dogs randomly received 1 of the following 4 epidural treatments 30 minutes before ovariohysterectomy (n = 10/group): saline (0.9% NaCl) solution (control), morphine (0.1 mg/kg), neostigmine (10 pg/kg), or morphine-neostigmine (0.1 mg/kg and 10 pg/kg, respectively). Analgesia was assessed for 24 hours after surgery by use of a visual analogue.scale (VAS; scale of 0 to 10) or numeric descriptive scale (NDS; scale of 0 to 24) and by the need for supplemental analgesia (morphine [0.5 mg/kg, IM] administered when VAS was >= 4 or NDS was >= 8).Results-Significantly more control dogs (n = 8) received supplemental analgesia, compared with the number of neostigmine-treated dogs (1); no dogs in the remaining groups received supplemental analgesia. Compared with values for the control dogs, the NDS scores were lower for morphine-neostigmine-treated dogs (from 2 to 6 hours and at 12 hours) and for morphine-treated dogs (all time points). The NDS scores were lower for morphine-treated dogs at 3, 12, and 24 hours, compared with values for neostigmine-treated dogs. The VAS was less sensitive than the NDS for detecting differences among groups.Conclusions and Clinical Relevance-Epidurally administered neostigmine reduced the use of supplemental analgesia after ovariohysterectorny in dogs. However, analgesic effects were less pronounced than for epidurally administered morphine or morphine-neostigmine. Adding neostigmine to epidurally administered morphine did not potentiate opioid-induced analgesia.
Resumo:
Objective To establish the correlation between the bispectral index (BIS) and different rates of infusion of propofol in dogs.Study design Prospective experimental trial.Animals Eight adult dogs weighing 6-20 kg.Methods Eight animals underwent three treatments at intervals of 20 days. Propofol was used for induction of anesthesia (10 mg kg(-1) IV), followed by a continuous rate infusion (CRI) at 0.2 mg kg(-1) minute(-1) (P2), 0.4 mg kg(-1) minute(-1) (P4) or 0.8 mg kg(-1) minute(-1) (P8) for 55 minutes. The BIS values were measured at 10, 20, 30, 40, and 50 minutes (T10, T20, T30, T40, and T50, respectively) after the CRI of propofol was started. Numeric data were submitted to analysis of variance followed by Tukey test (p < 0.05).Results The BIS differed significantly among groups at T40, when P8 was lower than P2 and P4. At T50, P8 was lower than P2. The electromyographic activity (EMG) in P2 and P4 was higher than P8 at T40 and T50.Conclusion An increase in propofol infusion rates decreases the BIS values and EMG.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective To examine the anesthetic effects of a xylazine-diazepam-ketamine (XDK) combination in roosters.Study design Prospective experimental trial.Animals Six healthy white Leghorn roosters weighing 2.03 +/- 0.08 kg.Methods Each rooster was pre-medicated with xylazine (3 mg kg(-1), IM) and after 15 minutes anesthesia was induced with a diazepam (4 mg kg(-1)) and ketamine (25 mg kg(-1)) combination injected into the pectoral muscles. Heart and respiratory rates were recorded before anesthesia and every 15 minutes after induction for 165 minutes. Cloacal temperature was measured before and 15 minutes after pre-medication and every 75 minutes thereafter during anesthesia. Quality of induction and recovery were scored subjectively; duration of loss of righting reflex, abolition of response to a painful stimulus and palpebral reflex were also recorded.Results Intramuscular injection of xylazine smoothly induced loss of the righting reflex within 3-4 minutes. Loss of response to a painful stimulus occurred at 13.1 +/- 2.9 minutes (mean +/- SD) after the administration of the D-K combination, and lasted for 63.0 +/- 5.3 minutes. Roosters anesthetized with this combination had a significant decrease in heart and respiratory rates and cloacal temperature. The recovery period lasted for up to 4 hours (227.5 +/- 15.4 minutes). Quality of recovery was satisfactory for four roosters but excitation was noted in two birds.Conclusions and clinical relevance The XDK combination was a useful anesthetic technique for typhlectomy in roosters. Nevertheless this drug combination should be used with caution and cardiopulmonary parameters monitored carefully. Under the conditions of this experiment it was associated with a decreased cloacal temperature and prolonged recoveries.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective To compare the cardiorespiratory effects and incidence of gastroesophageal reflux with the use of a laryngeal mask airway (LMA) or endotracheal tube (ET) in anesthetized cats during spontaneous (SV) or controlled ventilation (CV).Study design Prospective randomized experimental trial.Animals Thirty-two adult crossbred cats, weighing 2.7 +/- 0.4 kg.Methods the cats were sedated with intramuscular (IM) methotrimeprazine (0.5 mg kg(-1)) and buprenorphine (0.005 mg kg(-1)), followed 30 minutes later by induction of anesthesia with intravenous (IV) thiopental (12.5-20 mg kg(-1)). An ET was used in 16 cats and an LMA in the remaining 16 animals. Anesthesia was maintained with 0.5 minimum alveolar concentration (0.6%) of halothane in oxygen using a Mapleson D breathing system. Cats in both groups were further divided into two equal groups (n = 8), undergoing either SV or CV. Neuromuscular blockade with pancuronium (0.06 mg kg(-1)) was used to facilitate CV. Heart and respiratory rates, direct arterial blood pressure, capnometry (PE'CO2) and arterial blood gases were measured. Gastric reflux and possible aspiration was investigated by intragastric administration of 5 mL of radiographic contrast immediately after induction of anesthesia. Cervical and thoracic radiographs were taken at the end of anesthesia. Data were analyzed using ANOVA followed by Student-Newman-Keuls, Kruskal-Wallis or Friedman test where appropriate.Results Values for PaCO2 and PE'CO2 were higher in spontaneously breathing cats with the LMA when compared with other groups. Values of PaO2 and hemoglobin oxygen saturation did not differ between groups. Gastroesophageal reflux occurred in four of eight and two of eight cats undergoing CV with ET or LMA, respectively. There was no tracheal or pulmonary aspiration in any cases.Conclusions and clinical relevance the use of an LMA may be used as an alternative to endotracheal intubation in anesthetized cats. Although aspiration was not observed, gastric reflux may occur in mechanically ventilated animals.
Resumo:
The smaller volemic state from hypertonic (7.5%) saline (HS) solution administration in hemorrhagic shock can determine lesser systemic oxygen delivery and tissue oxygenation than conventional plasma expanders. In a model of hemorrhagic shock in dogs, we studied the systemic and gastrointestinal oxygenation effects of HS and hyperoncotic (6%) dextran-70 in combination with HS (HSD) solutions in comparison with lactated Ringer's (LR) and (6%) hydroxyethyl starch (HES) solutions. Forty-eight mongrel dogs were anesthetized, mechanically ventilated, and subjected to splenectomy. A gastric air tonometer was placed. in the stomach for intramucosal gastric CO2 (Pgco(2)) determination and for the calculation of intramucosal. pH (pHi):[pHi = pHa - log(Pgco(2)/Paco(2))].The dogs were hemorrhaged (42% of blood volume) to hold mean arterial blood pressure at 40-50 mm Hg over 30 min and were then resuscitated with LR (n = 12) in a 3:1 relation to removed blood volume; HS (n = 12), 6 mL / kg; HSD (n = 12), 6 mL / kg; and HES (mean molecular weight, 200 kDa; degree of substitution, 0.5) (n = 12) in a 1:1 relation to the removed blood volume. Hemodynamic, systemic, and gastric oxygenation variables were measured at baseline, after 30 min of hemorrhage, and 5, 60, and 120 min after intravascular fluid resuscitation. After fluid resuscitation, HS showed significantly lower arterial pH and mixed venous Po-2 and higher systemic oxygen uptake index and systemic oxygenation extraction than LR and HES (P < 0.05), whereas HSD showed significantly lower arterial pH than LR and HES (P < 0.05). Only HS and HSD did not return arterial pH and pHi to control levels (P < 0.05). In conclusion, all solutions improved systemic and gastrointestinal oxygenation after hemorrhagic shock in dogs. However, the HS solution showed the worst response in comparison to LR and HES solutions in relation to systemic oxygenation, whereas HSD showed intermediate values. HS and HSD solutions did not return regional oxygenation to control values.
Resumo:
This study compared pressure and thermal thresholds after administration of three opioids in eight cats. Pressure stimulation was performed via a bracelet taped around the forearm. Three ball-bearings were advanced against the forearm by inflation of a modified blood pressure bladder. Pressure in the cuff was recorded at the end point (leg shake and head turn). Thermal threshold was tested as previously reported using a heated probe held against the thorax [Dixon et al. (2002) Research in Veterinary Science, 72, 205]. After baseline recordings, each cat received subcutaneous methadone 0.2 mg/kg, morphine 0.2 mg/kg, buprenorphine 0.02 mg/kg or saline 0.3 mL in a four period cross-over study. Measurements were made at 15, 30, 45 min and 1, 2, 3, 4, 8, 12 and 24 h after the injection. Data were analysed by ANOVA (P < 0.05). There were no significant changes in thresholds after saline. Thermal threshold increased at 45 min after buprenorphine (maximum 2.8 +/- 3 degrees C), 1-3 h after methadone (maximum 3.4 +/- 1.9 degrees C) and 45 min to 1 h (maximum 3.4 +/- 2 degrees C) after morphine. Pressure threshold increased 30-45 min (maximum 238 +/- 206 mmHg) after buprenorphine, 45-60 min after methadone (maximum 255 +/- 232 mmHg) and 45-60 min and 3-6 h (maximum 255 +/- 232 mmHg) after morphine. Morphine provided the best analgesia, and methadone appears a promising alternative. Buprenorphines limited effect was probably related to the subcutaneous route of administration. Previously, buprenorphine has produced much greater effects when given by other routes.
Resumo:
Objective To compare the cardiorespiratory changes induced by equipotent concentrations of halothane (HAL), isoflurane (ISO) and sevollurane (SEVO) before and after hemorrhage.Study design. Prospective, randomized clinical trial.Animals. Twenty-four healthy adult dogs weighing 15.4 +/- 3.4 kg (mean +/- SD).Methods. Animals were randomly allocated to one of three groups (n = 8 per group). In each group, anesthesia was maintained with 1.5 minimum alveolar concentration of HAL (1.3%), ISO (1.9%,) and SEVO (3.5%) in oxygen. Controlled ventilation was performed to maintain eucapnia. Cardiorespiratory variables were evaluated at baseline (between 60 and 90 minutes after induction), immediately after and 30 minutes after the withdrawal of 32 mL kg(-1) of blood (400% of the estimated blood volume) over a 30-minute period.Results. During baseline conditions, ISO and SEVO resulted in higher cardiac index (CI) than HAL. Heart rates were higher with SEVO at baseline. while mean arterial pressure (MAP) and mean pulmonary arterial pressure did not differ between groups. Although heart rate values were higher for ISO and SEVO after hemorrhage, only ISO resulted in a higher CI when compared with HAL. In ISO-anesthetized dogs, MAP was higher immediately after hemorrhage, and this was related to better maintenance of CI and to an increase in systemic vascular resistance index from baseline.Conclusions. Although the hemodynamic responses of ISO and SEVO are similar in normovolaemic dogs, ISO results in better maintenance of circulatory function during the early period following a massive blood loss. Clinical relevance Inhaled anesthetics should be used judiciously in animals presented with blood loss. However, if an inhalational agent is to be used under these circumstances, ISO may provide better hemodynamic stability than SEVO or HAL.