975 resultados para Amino-acid Sequence
Resumo:
Twelve ileal cannulated pigs (30.9 ± 2.7 kg) were used to determine the apparent (AID) and standardized (SID) ileal digestibility of protein and AA in canola meals (CM) derived from black- (BNB) and yellow-seeded (BNY) Brassica napus canola and yellow-seeded Brassica juncea (BJY). The meals were produced using either the conventional pre-press solvent extraction process (regular meal) or a new, vacuum-assisted cold process of meal de-solventization (white flakes) to provide 6 different meals. Six cornstarch-based diets containing 35% canola meal as the sole source of protein in a 3 (variety) × 2 (processing) factorial arrangement were randomly allotted to pigs in a 6 × 7 incomplete Latin square design to have 6 replicates per diet. A 5% casein diet was fed to estimate endogenous AA losses. Canola variety and processing method interacted for the AID of DM (P = 0.048), N (P = 0.010), and all AA (P < 0.05), except for Arg, Lys, Phe, Asp, Glu, and Pro. Canola variety affected or tended to affect the AID of most AA but had no effect on the AID of Lys, Met, Val, Cys, and Pro, whereas processing method had an effect on only Lys and Asp and tended to affect the AID of Thr, Gly and Ser. The effects of canola variety, processing method, and their interaction on the SID values for N and AA followed a similar pattern as for AID values. For the white flakes, SID of N in BJY (74.2%) was lower than in BNY and BNB, whose values averaged 78.5%; however, among the regular meals, BJY had a greater SID value for N than BNY and BNB (variety × processing, P = 0.015). For the white flakes, the SID of Ile (86.4%), Leu (87.6%), Lys (88.9%), Thr (87.6%) and Val (84.2%) in BNB were greater than BNY and BJY. Opposite results were observed for the regular processing, with SID of Lys (84.1%), Met (89.5%), Thr (84.1%), and Val (83.6%) being greater in BJY, followed by BNB and BNY(variety × processing, P < 0.057). The SID of Met was greatest for the white flakes (90.2%) but least for the regular processing (83.0%) in BNY (variety × processing, P < 0.057). It was concluded that the AID and SID of N and AA of the CM tested varied according to canola variety and the processing method used. Overall, the SID values for Ile, Leu, Lys, Met, Thr, and Val averaged across CM types and processing methods were 81.8, 82.6, 83.4, 85.9, 80.8, and 78.4%, respectively.
Resumo:
Among various groups of fishes, a shift in peak wavelength sensitivity has been correlated with changes in their photic environments. The genus Sebastes is a radiation of marine fish species that inhabit a wide range of depths from intertidal to over 600 m. We examined 32 species of Sebastes for evidence of adaptive amino acid substitution at the rhodopsin gene. Fourteen amino acid positions were variable among these species. Maximum likelihood analyses identify several of these to be targets of positive selection. None of these correspond to previously identified critical amino acid sites, yet they may in fact be functionally important. The occurrence of independent parallel changes at certain amino acid positions reinforces this idea. Reconstruction of habitat depths of ancestral nodes in the phylogeny suggests that shallow habitats have been colonized independently in different lineages. The evolution of rhodopsin appears to be associated with changes in depth, with accelerated evolution in lineages that have had large changes in depth.
Resumo:
Mass spectrometry-based serum metabolic profiling is a promising tool to analyse complex cancer associated metabolic alterations, which may broaden our pathophysiological understanding of the disease and may function as a source of new cancer-associated biomarkers. Highly standardized serum samples of patients suffering from colon cancer (n = 59) and controls (n = 58) were collected at the University Hospital Leipzig. We based our investigations on amino acid screening profiles using electrospray tandem-mass spectrometry. Metabolic profiles were evaluated using the Analyst 1.4.2 software. General, comparative and equivalence statistics were performed by R 2.12.2. 11 out of 26 serum amino acid concentrations were significantly different between colorectal cancer patients and healthy controls. We found a model including CEA, glycine, and tyrosine as best discriminating and superior to CEA alone with an AUROC of 0.878 (95% CI 0.815-0.941). Our serum metabolic profiling in colon cancer revealed multiple significant disease-associated alterations in the amino acid profile with promising diagnostic power. Further large-scale studies are necessary to elucidate the potential of our model also to discriminate between cancer and potential differential diagnoses. In conclusion, serum glycine and tyrosine in combination with CEA are superior to CEA for the discrimination between colorectal cancer patients and controls.
Resumo:
The proposition posed is that the value of amino acid conjugation to the organism is not, as in the traditional view, to use amino acids for the detoxication of aromatic acids. Rather, the converse is more likely, to use aromatic acids that originate from the diet and gut microbiota to assist in the regulation of body stores of amino acids, such as glycine, glutamate, and, in certain invertebrates, arginine, that are key neurotransmitters in the central nervous system (CNS). As such, the amino acid conjugations are not so much detoxication reactions, rather they are homeostatic and neuroregulatory processes. Experimental data have been culled in support of this hypothesis from a broad range of scientific and clinical literature. Such data include the low detoxication value of amino acid conjugations and the Janus nature of certain amino acids that are both neurotransmitters and apparent conjugating agents. Amino acid scavenging mechanisms in blood deplete brain amino acids. Amino acids glutamate and glycine when trafficked from brain are metabolized to conjugates of aromatic acids in hepatic mitochondria and then irreversibly excreted into urine. This process is used clinically to deplete excess nitrogen in cases of urea cycle enzymopathies through excretion of glycine or glutamine as their aromatic acid conjugates. Untoward effects of high-dose phenylacetic acid surround CNS toxicity. There appears to be a relationship between extent of glycine scavenging by benzoic acid and psychomotor function. Glycine and glutamine scavenging by conjugation with aromatic acids may have important psychosomatic consequences that link diet to health, wellbeing, and disease.
Resumo:
L-amino acid oxidases are widely found in snake venoms and are thought to contribute to the toxicity upon envenomation. The mechanism of these toxic effects and whether they result from the enzymatic activity are still uncertain although many papers describing the biological and pharmacological effects of L-amino acid oxidases have appeared recently, which provide more information about their action on platelets, induction of apoptosis, haemorrhagic effects, and cytotoxicity. This review summarizes the physiochemical properties, structural characteristics and various biological functions of snake venom L-amino acid oxidases (SV-LAAOs). In addition, the putative mechanisms of SV-LAAO-induced platelet aggregation and apoptosis of cells are discussed in more detail.
Resumo:
ABSTRACT: BACKGROUND: Many parasitic organisms, eukaryotes as well as bacteria, possess surface antigens with amino acid repeats. Making up the interface between host and pathogen such repetitive proteins may be virulence factors involved in immune evasion or cytoadherence. They find immunological applications in serodiagnostics and vaccine development. Here we use proteins which contain perfect repeats as a basis for comparative genomics between parasitic and free-living organisms. RESULTS: We have developed Reptile http://reptile.unibe.ch, a program for proteome-wide probabilistic description of perfect repeats in proteins. Parasite proteomes exhibited a large variance regarding the proportion of repeat-containing proteins. Interestingly, there was a good correlation between the percentage of highly repetitive proteins and mean protein length in parasite proteomes, but not at all in the proteomes of free-living eukaryotes. Reptile combined with programs for the prediction of transmembrane domains and GPI-anchoring resulted in an effective tool for in silico identification of potential surface antigens and virulence factors from parasites. CONCLUSION: Systemic surveys for perfect amino acid repeats allowed basic comparisons between free-living and parasitic organisms that were directly applicable to predict proteins of serological and parasitological importance. An on-line tool is available at http://genomics.unibe.ch/dora.
Resumo:
Intrathecal injections of 50 to 100 micro g of (N-acetylmuramyl-L-alanyl-D-isoglutamine) muramyl dipeptide (MDP)/rabbit dose-dependently triggered tumor necrosis factor alpha (TNF-alpha) secretion (12 to 40,000 pg/ml) preceding the influx of leukocytes in the subarachnoid space of rabbits. Intrathecal instillation of heat-killed unencapsulated R6 pneumococci produced a comparable leukocyte influx but only a minimal level of preceding TNF-alpha secretion. The stereochemistry of the first amino acid (L-alanine) of the MDP played a crucial role with regard to its inflammatory potential. Isomers harboring D-alanine in first position did not induce TNF-alpha secretion and influx of leukocytes. This stereospecificity of MDPs was also confirmed by measuring TNF-alpha release from human peripheral mononuclear blood cells stimulated in vitro. These data show that the inflammatory potential of MDPs depends on the stereochemistry of the first amino acid of the peptide side chain and suggest that intact pneumococci and MDPs induce inflammation by different pathways.
Resumo:
Sustained high-level exposure to glutamate, an excitatory amino acid neurotransmitter, leads to neuronal death. Kynurenic acid attenuates the toxic effects of glutamate by inhibition of neuronal excitatory amino acid receptors, including the N-methyl-D-aspartate subtype. To evaluate the role of glutamate in causing neuronal injury in a rat model of meningitis due to group B streptococci, animals were treated with kynurenic acid (300 mg/kg subcutaneously once daily) or saline beginning at the time of infection. Histopathologic examination after 24-72 h showed two distinct forms of neuronal injury, areas of neuronal necrosis in the cortex and injury of dentate granule cells in the hippocampus. Animals treated with kynurenic acid showed significantly less neuronal injury (P < .03) in the cortex and the hippocampus than did untreated controls. These results suggest an important contribution of glutamate to neurotoxicity in this animal model of neonatal meningitis.
Resumo:
Phenylketonuria, an autosomal recessive Mendelian disorder, is one of the most common inborn errors of metabolism. Although currently treated by diet, many suboptimal outcomes occur for patients. Neuropathological outcomes include cognitive loss, white matter abnormalities, and hypo- or demyelination, resulting from high concentrations and/or fluctuating levels of phenylalanine. High phenylalanine can also result in competitive exclusion of other large neutral amino acids from the brain, including tyrosine and tryptophan (essential precursors of dopamine and serotonin). This competition occurs at the blood brain barrier, where the L-type amino acid transporter, LAT1, selectively facilitates entry of large neutral amino acids. The hypothesis of these studies is that certain non-physiological amino acids (NPAA; DL-norleucine (NL), 2-aminonorbornane (NB; 2-aminobicyclo-(2,1,1)-heptane-2-carboxylic acid), α-aminoisobutyrate (AIB), and α-methyl-aminoisobutyrate (MAIB)) would competitively inhibit LAT1 transport of phenylalanine (Phe) at the blood-brain barrier interface. To test this hypothesis, Pah-/- mice (n=5, mixed gender; Pah+/-(n=5) as controls) were fed either 5% NL, 0.5% NB, 5% AIB or 3% MAIB (w/w 18% protein mouse chow) for 3 weeks. Outcome measurements included food intake, body weight, brain LNAAs, and brain monoamines measured via LCMS/MS or HPLC. Brain Phe values at sacrifice were significantly reduced for NL, NB, and MAIB, verifying the hypothesis that these NPAAs could inhibit Phe trafficking into the brain. However, concomitant reductions in tyrosine and methionine occurred at the concentrations employed. Blood Phe levels were not altered indicating no effect of NPAA competitors in the gut. Brain NL and NB levels, measured with HPLC, verified both uptake and transport of NPAAs. Although believed predominantly unmetabolized, NL feeding significantly increased blood urea nitrogen. Pah-/-disturbances of monoamine metabolism were exacerbated by NPAA intervention, primarily with NB (the prototypical LAT inhibitor). To achieve the overarching goal of using NPAAs to stabilize Phe transport levels into the brain, a specific Phe-reducing combination and concentration of NPAAs must be found. Our studies represent the first in vivo use of NL, NB and MAIB in Pah-/- mice, and provide proof-of-principle for further characterization of these LAT inhibitors. Our data is the first to document an effect of MAIB, a specific system A transport inhibitor, on large neutral amino acid transport.
Substrate binding tunes conformational flexibility and kinetic stability of an amino acid antiporter
Resumo:
We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state.
Resumo:
Tight homeostatic control of brain amino acids (AA) depends on transport by solute carrier family proteins expressed by the blood-brain barrier (BBB) microvascular endothelial cells (BMEC). To characterize the mouse BMEC transcriptome and probe culture-induced changes, microarray analyses of platelet endothelial cell adhesion molecule-1-positive (PECAM1(+)) endothelial cells (ppMBMECs) were compared with primary MBMECs (pMBMEC) cultured in the presence or absence of glial cells and with b.End5 endothelioma cell line. Selected cell marker and AA transporter mRNA levels were further verified by reverse transcription real-time PCR. Regardless of glial coculture, expression of a large subset of genes was strongly altered by a brief culture step. This is consistent with the known dependence of BMECs on in vivo interactions to maintain physiologic functions, for example, tight barrier formation, and their consequent dedifferentiation in culture. Seven (4F2hc, Lat1, Taut, Snat3, Snat5, Xpct, and Cat1) of nine AA transporter mRNAs highly expressed in freshly isolated ppMBMECs were strongly downregulated for all cultures and two (Snat2 and Eaat3) were variably regulated. In contrast, five AA transporter mRNAs with low expression in ppMBMECs, including y(+)Lat2, xCT, and Snat1, were upregulated by culture. We hypothesized that the AA transporters highly expressed in ppMBMECs and downregulated in culture have a major in vivo function for BBB transendothelial transport.
Resumo:
Benzimidazoles were the first broad-spectrum anthelmintics and are still in use today against gastro-intestinal nematodes of ruminants such as Haemonchus contortus. Benzimidazoles block the polymerization of nematode microtubules. However, their efficacy is jeopardized by the spread of drug-resistant parasites that carry point mutations in beta-tubulin. Here we use a novel in vitro selection-in vivo propagation protocol to breed drug-resistant H. contortus. After 8 generations of selection with thiabendazole an in vitro resistance factor of 1000 was reached that was also relevant in vivo in infected sheep. The same procedure carried out with ivermectin produced only a moderate resistance phenotype that was not apparent in sheep. Cloning and sequencing of the beta-tubulin genes from the thiabendazole-resistant H. contortus mutants revealed all of the isotype 1 alleles, and part of the isotype 2 alleles, to carry the mutation glutamate(198) to alanine (E198A). An allele-specific PCR was developed, which may be helpful in monitoring the prevalence of alanine(198) encoding alleles in the beta-tubulin isotype 1 gene pool of H. contortus in the field.