988 resultados para Alps
Resumo:
Changes in fire occurrence during the last decades in the southern Swiss Alps make knowledge on fire history essential to understand future evolution of the ecosystem composition and functioning. In this context, palaeoecology provides useful insights into processes operating at decadal-to-millennial time scales, such as the response of plant communities to intensified fire disturbances during periods of cultural change. We provide a high-resolution macroscopic charcoal and pollen series from Guèr, a well-dated peat sequence at mid-elevation (832 m.a.s.l.) in southern Switzerland, where the presence of local settlements is documented since the late Bronze Age and the Iron Age. Quantitative fire reconstruction shows that fire activity sharply increased from the Neolithic period (1–3 episodes/1000 year) to the late Bronze and Iron Age (7–9 episodes/1000 year), leading to extensive clearance of the former mixed deciduous forest (Alnus glutinosa, Betula, deciduous Quercus). The increase in anthropogenic pollen indicators (e.g. Cerealia-type, Plantago lanceolata) together with macroscopic charcoal suggests anthropogenic rather than climatic forcing as the main cause of the observed vegetation shift. Fire and controlled burning were extensively used during the late Roman Times and early Middle Ages to promote the introduction and establishment of chestnut (Castanea sativa) stands, which provided an important wood and food supply. Fire occurrence declined markedly (from 9 to 5–6 episodes/1000 year) during late Middle Ages because of fire suppression, biomass removal by human population, and landscape fragmentation. Land-abandonment during the last decades allowed forest to partly re-expand (mainly Alnus glutinosa, Betula) and fire frequency to increase.
Resumo:
We synthesized published data on the erosion of the Alpine foreland basin and apatite fission-track ages from the Alps to infer the erosional sediment budget history for the past 5 m.y. The data reveal that erosion of the Alpine foreland basin is highest in front of the western Alps (between 2 and 0.6 km) and decreases eastward over a distance of 700 km to the Austrian foreland basin (similar to 200 m). For the western Alps, erosion rates are >0.6 km/m.y., while erosion rates for the eastern foreland basin and the adjacent eastern Alps are <0.1 km/m.y., except for a small-scale signal in the Tauern Window. The results yield a large ellipsoidal, orogen-crossing pattern of erosion, centered along the western Alps. We suggest that accelerated erosion of the western Alps and their foreland basin occurred in response to regional-scale surface uplift, related to lithospheric unloading of the Eurasian slab along the Eurasian-Adriatic plate boundary. While we cannot rule out recent views that global climate change led to substantial erosion of the European Alps since 5 Ma, we postulate that regional-scale tectonic processes have driven erosion during this time, modulated by an increased erosional flux in response to Quaternary glaciations.
Resumo:
Although beryllium-10 (10Be) concentrations in stream sediments provide useful synoptic views of catchment-wide erosion rates, little is known on the relative contributions of different sediment supply mechanisms to the acquisition of their initial signature in the headwaters. Here we address this issue by conducting a 10Be-budget of detrital materials that characterize the morphogenetic domains representative of high-altitude environments of the European Alps. We focus on the Etages catchment, located in the Ecrins-Pelvoux massif (southeast France), and illustrate how in situ 10Be concentrations can be used for tracing the origin of the sand fraction from the bedload in the trunk stream. The landscape of the Etages catchment is characterized by a geomorphic transient state, high topographic gradients, and a large variety of modern geomorphic domains ranging from glacial environments to scarcely vegetated alluvial plains. Beryllium-10 concentrations measured in the Etages catchment vary from similar to 1 x 104 to 4.5 x 105 atoms per gram quartz, while displaying consistent 10Be signatures within each representative morphogenetic unit. We show that the basic requirements for inferring catchment-wide denudation from 10Be concentration measurements are not satisfied in this small, dynamic catchment. However, the distinct 10Be signature observed for the geomorphic domains can be used as a tracer. We suggest that a terrestrial cosmogenic nuclide (TCN) budget approach provides a valuable tool for the tracing of material origin in basins where the let nature do the averaging' principles may be violated.
Resumo:
Can the concept of water as a socio-natural hybrid and the analysis of different users’ perceptions of water advance the study of water sustainability? In this article, I explore this question by empirically studying sustainability values and challenges, as well as distinct types of water as identified by members of five water user groups in a case study region in the Swiss Alps. Linking the concept of water as a socio-natural hybrid with the different water users’ perspectives provided valuable insights into the complex relations between material, cultural, and discursive practices. In particular, it provided a clearer picture of existing water sustainability challenges and the factors and processes that hinder more sustainable outcomes. However, by focusing on relational processes and individual stakeholder perspectives, only a limited knowledge could be created regarding a) what a more sustainable water future would look like and b) how current unsustainable practices can be effectively transformed into more sustainable ones. I conclude by arguing that the concept of water as a socio-natural hybrid provides an interesting analytical tool for investigating sustainability questions; however, if it is to contribute to water sustainability, it needs to be integrated into a broader transdisciplinary research perspective that understands science as part of a deliberative and reflective process of knowledge co-production and social learning between all actor groups involved.
Resumo:
We explore the controls of the litho-tectonic architecture on the erosional flux in the 370-km2 Glogn basin (European Alps). In this basin, the bedding and schistosity of the bedrock dip parallel to the topographic slope on the NW valley flank, leading to a non-dip slope situation on the opposite SE valley side. While the dip slope condition has promoted the occurrence of landslides (e.g. the c. 30-km2 deep-seated Lumnezia landslide), the opposite non-dip slope side of the valley hosts >100-m-deeply incised tributary streams. 10Be concentrations of stream sediments yield catchment-averaged denudation rates that vary between 0.27 ± 0.03 and 2.19 ± 0.37 mm a−1, while the spatially averaged denudation rate of the entire basin is 1.99 ± 0.34 mm a−1. Our 10Be-based approach reveals that the Lumnezia landslide front contributes c. 30–65% of the entire sediment budget, although it covers <5% of the Glogn basin. This suggests a primary control of the bedrock bedding on erosion rates and processes.
Resumo:
It is widely accepted that climate has a strong impact and exerts important feedbacks on erosional processes and sediment transport mechanisms. However, the extent at which climate influences erosion is still a matter of debate. In this paper we test whether frost-cracking processes and related temperature variations can influence the sediment production and surface erosion in a small catchment situated in the eastern Italian Alps. To this extent, we first present a geomorphic map of the region that we complement with published 10Be-based denudation rates. We then apply a preexisting heat-flow model in order to analyze the variations of the frost-cracking intensity (FCI) in the study area, which could have controlled the sediment production in the basin. Finally, we compare the model results with the pattern of denudation rates and Quaternary deposits in the geomorphic map. The model results, combined with field observations, mapping, and quantitative geomorphic analyses, reveal that frost-cracking processes have had a primary role in the production of sediment where the intensity of sediment supply has been dictated and limited by the combined effect of temperature variations and conditions of bedrock preservation. These results highlight the importance of a yet poorly understood process for the production of sediment in mountain areas.
Resumo:
Pressure–Temperature–time (P–T–t) estimates of the syn-kinematic strain at the peak-pressure conditions reached during shallow underthrusting of the Briançonnais Zone in the Alpine subduction zone was made by thermodynamic modelling and 40Ar/39Ar dating in the Plan-de-Phasy unit (SE of the Pelvoux Massif, Western Alps). The dated phengite minerals crystallized syn-kinematically in a shear zone indicating top-to-the-N motion. By combining X-ray mapping with multi-equilibrium calculations, we estimate the phengite crystallization conditions at 270 ± 50 °C and 8.1 ± 2 kbar at an age of 45.9 ± 1.1 Ma. Combining this P–T–t estimate with data from the literature allows us to constrain the timing and geometry of Alpine continental subduction. We propose that the Briançonnais units were scalped on top of the slab during ongoing continental subduction and exhumed continuously until collision.
Resumo:
The deglaciation history of the Swiss Alps after the Last Glacial Maximum involved the decay of several ice domes and the subsequent disintegration of valley glaciers at high altitude. Here we use bedrock exposure dating to reconstruct the temporal and spatial pattern of ice retreat at the Simplon Pass (altitude: ∼2000 m) located 40 km southwest of the ‘Rhône ice dome’. Eleven 10Be exposure ages from glacially polished quartz veins and ice-molded bedrock surfaces cluster tightly between 13.5 ± 0.6 ka and 15.4 ± 0.6 ka (internal errors) indicating that the Simplon Pass depression became ice-free at 14.1 ± 0.4 ka (external error of mean age). This age constraint is interpreted to record the melting of the high valley glaciers in the Simplon Pass region during the warm Bølling–Allerød interstadial shortly after the Oldest Dryas stadial. Two bedrock samples collected a few hundred meters above the pass depression yield older 10Be ages of 17.8 ± 0.6 ka and 18.0 ± 0.6 ka. These ages likely reflect the initial downwasting of the Rhône ice dome and the termination of the ice transfluence from the ice dome across the Simplon Pass toward the southern foreland. There, the retreat of the piedmont glacier in Val d’Ossola was roughly synchronous with the decay of the Rhône ice dome in the interior of the mountain belt, as shown by 10Be ages of 17.7 ± 0.9 ka and 16.1 ± 0.6 ka for a whaleback at ∼500 m elevation near Montecrestese in northern Italy. In combination with well-dated paleoclimate records derived from lake sediments, our new age data suggest that during the deglaciation of the European Alps the decay of ice domes was approximately synchronous with the retreat of piedmont glaciers in the foreland and was followed by the melting of high-altitude valley glaciers after the transition from the Oldest Dryas to the Bølling–Allerød, when mean annual temperatures rose rapidly by ∼3 °C.
Resumo:
To calibrate the in situ 10Be production rate, we collected surface samples from nine large granitic boulders within the deposits of a rock avalanche that occurred in AD 1717 in the upper Ferret Valley, Mont Blanc Massif, Italy. The 10Be concentrations were extremely low and successfully measured within 10% analytical uncertainty or less. The concentrations vary from 4829 ± 448 to 5917 ± 476 at g−1. Using the historical age exposure time, we calculated the local and sea level-high latitude (i.e. ≥60°) cosmogenic 10Be spallogenic production rates. Depending on the scaling schemes, these vary between 4.60 ± 0.38 and 5.26 ± 0.43 at g−1 a−1. Although they correlate well with global values, our production rates are clearly higher than those from more recent calibration sites. We conclude that our 10Be production rate is a mean and an upper bound for production rates in the Massif region over the past 300 years. This rate is probably influenced by inheritance and will yield inaccurate (e.g. too young) exposure ages when applied to surface-exposure studies in the area. Other independently dated rock-avalanche deposits in the region that are approximately 103 years old could be considered as possible calibration sites.