980 resultados para Al-Wajh Deep
Resumo:
Chrysocolla (Cu, Al)2H2Si2O5(OH)4·nH2O is a hydrated copper hydroxy silicate and is commonly known as a semi-precious jewel. The mineral has an ill defined structure but is said to be orthorhombic, although this remains unproven. Thus, one of the few methods of studying the molecular structure of chrysocolla is to use vibrational spectroscopy. Chrysocolla may be defined as a colloidal mineral. The question arises as to whether chrysocolla is a colloidal system of spertiniite and amorphous silica. The main question addressed by this study is whether chrysocolla is (1) a mesoscopic assemblage of spertiniite, Cu(OH)2, silica, and water, (2) represents a colloidal gel or (3) is composed of microcrystals with a distinct structure. Considerable variation in the vibrational spectra is observed between chrysocolla samples. The Raman spectrum of chrysocolla is characterised by an intense band at 3624 cm−1 assigned to the OH stretching vibrations. Intense Raman bands found at 674, 931 and 1058 cm−1 are assigned to SiO3 vibrations. The Raman spectrum of spertiniite does not correspond to the spectrum of chrysocolla and it is concluded that the two minerals are not related. The spectra of chrysocolla correspond to a copper silicate colloidal gel.
Resumo:
Sedimentary palygorskite (SP) and hydrothermal palygorskite (HP) were characterized by XRF, TG/DSC, andXRD. The total iron and dissociative iron in palygorskite were detected using spectrophotometry. The results showed that about 3.57 wt% of Fe2O3 was detected in SP in contrast with 0.4 wt% in HP. SP was a Fe-substituted palygorskite, and HP was an Al-rich palygorskite. The occurrence of Fe substitution in SP resulted in two mass loss steps of coordinated water and resulted in a larger d spacing. The SP showed greater thermal stability than the HP. It was proposed the change of (200) diffraction peak and (240) diffraction peak reflect changes of tetrahedral and octahedral structures in palygorskite.
Resumo:
The publication of the fourth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV; American Psychiatric Association, 1994) introduced the notion that a life-threatening illness can be a stressor and catalyst for Posttraumatic Stress Disorder (PTSD). Since then a solid body of research has been established investigating the post-diagnosis experience of cancer. These studies have identified a number of short and long-term life changes resulting from a diagnosis of cancer and associated treatments. In this chapter, we discuss the psychosocial response to the cancer experience and the potential for cancer-related distress. Cancer can represent a life-threatening diagnosis that may be associated with aggressive treatments and result in physical and psychological changes. The potential for future trauma through the lasting effects of the disease and treatment, and the possibility of recurrence, can be a source of continued psychological distress. In addition to the documented adverse repercussions of cancer, we also outline the recent shift that has occurred in the psycho-oncology literature regarding positive life change or posttraumatic growth that is commonly reported after a diagnosis of cancer. Adopting a salutogenic framework acknowledges that the cancer experience is a dynamic psychosocial process with both negative and positive repercussions. Next, we describe the situational and individual factors that are associated with posttraumatic growth and the types of positive life change that are prevalent in this context. Finally, we discuss the implications of this research in a therapeutic context and the directions of future posttraumatic growth research with cancer survivors. This chapter will present both quantitative and qualitative research that indicates the potential for personal growth from adversity rather than just mere survival and return to pre-diagnosis functioning. It is important to emphasise however, that the presence of growth and prevalence of resilience does not negate the extremely distressing nature of a cancer diagnosis for the patient and their families and the suffering that can accompany treatment regimes. Indeed, it will be explained that for growth to occur, the experience must be one that quite literally shatters previously held schemas in order to act as a catalyst for change.
Resumo:
The effects of small changes in flight-path parameters (primary and secondary flight paths, detector angles), and of displacement of the sample along the beam axis away from its ideal position, are examined for an inelastic time-of-flight (TOF) neutron spectrometer, emphasising the deep-inelastic regime. The aim was to develop a rational basis for deciding what measured shifts in the positions of spectral peaks could be regarded as reliable in the light of the uncertainties in the calibrated flight-path parameters. Uncertainty in the length of the primary or secondary flight path has the least effect on the positions of the peaks of H, D and He, which are dominated by the accuracy of the calibration of the detector angles. This aspect of the calibration of a TOF spectrometer therefore demands close attention to achieve reliable outcomes where the position of the peaks is of significant scientific interest and is discussed in detail. The corresponding sensitivities of the position of peak of the Compton profile, J(y), to flight-path parameters and sample position are also examined, focusing on the comparability across experiments of results for H, D and He. We show that positioning the sample to within a few mm of the ideal position is required to ensure good comparability between experiments if data from detectors at high forward angles are to be reliably interpreted.
Resumo:
In 1971, Rempt et al. reported peripheral refraction patterns (skiagrams) along the horizontal visual field in 442 people. Later in the same year, Hoogerheide et al. used skiagrams in combination with medical records to relate skiagrams in emmetropes and hyperopes to progression of myopia in young adults. The two articles have spurred interest in peripheral refraction in the past decade. We challenge the understanding that their articles provide evidence that the peripheral refraction pattern along the horizontal visual field is predictive of whether or not a person develops myopia. First, although it has been generally assumed that the skiagrams were measured before the changes in refraction were monitored, Hoogerheide et al. did not state that this was the case. Second, if the skiagrams were obtained at an initial examination and given the likely rates of recruitment and successful completion of training, the study must have taken place during a period of 10 to 15 years; it is much more likely that Hoogerheide et al. measured the skiagrams in a shorter period. Third, despite there being many more emmetropes and hyperopes in the Rempt et al. article than there are in the Hoogerheide et al. article, the number of people in two types of “at risk” skiagrams is greater in the latter; this is consistent with the central refraction status being reported from an earlier time by Hoogerheide et al. than by Rempt et al. In summary, we believe that the skiagrams reported by Hoogerheide et al. were taken at a later examination, after myopia did or did not occur, and that the refraction data from the initial examination were retrieved from the medical archives. Thus, this work does not provide evidence that peripheral refraction pattern is indicative of the likely development of myopia.
Resumo:
Curriculum documents for mathematics emphasise the importance of promoting depth of knowledge rather than shallow coverage of the curriculum. In this paper, we report on a study that explored the analysis of junior secondary mathematics textbooks to assess their potential to assist in teaching and learning aimed at building and applying deep mathematical knowledge. The method of analysis involved the establishment of a set of specific curriculum goals and associated indicators, based on research into the teaching and learning of a particular field within the mathematics curriculum, namely proportion and proportional reasoning. Topic selection was due to its pervasive nature throughout the school mathematics curriculum at this level. As a result of this study, it was found that the five textbook series examined provided limited support for the development of multiplicative structures required for proportional reasoning, and hence would not serve well the development of deep learning of mathematics. The study demonstrated a method that could be applied to the analysis of junior secondary mathematics in many parts of the world.
Resumo:
The phosphate mineral series eosphorite–childrenite–(Mn,Fe)Al(PO4)(OH)2·(H2O) has been studied using a combination of electron probe analysis and vibrational spectroscopy. Eosphorite is the manganese rich mineral with lower iron content in comparison with the childrenite which has higher iron and lower manganese content. The determined formulae of the two studied minerals are: (Mn0.72,Fe0.13,Ca0.01)(Al)1.04(PO4, OHPO3)1.07(OH1.89,F0.02)·0.94(H2O) for SAA-090 and (Fe0.49,Mn0.35,Mg0.06,Ca0.04)(Al)1.03(PO4, OHPO3)1.05(OH)1.90·0.95(H2O) for SAA-072. Raman spectroscopy enabled the observation of bands at 970 cm−1 and 1011 cm−1 assigned to monohydrogen phosphate, phosphate and dihydrogen phosphate units. Differences are observed in the area of the peaks between the two eosphorite minerals. Raman bands at 562 cm−1, 595 cm−1, and 608 cm−1 are assigned to the �4 bending modes of the PO4, HPO4 and H2PO4 units; Raman bands at 405 cm−1, 427 cm−1 and 466 cm−1 are attributed to the �2 modes of these units. Raman bands of the hydroxyl and water stretching modes are observed. Vibrational spectroscopy enabled details of the molecular structure of the eosphorite mineral series to be determined.
Resumo:
The pegmatite mineral qingheiite Na2(Mn2+,Mg,Fe2+)2(Al,Fe3+)(PO4)3 has been studied by a combination of SEM and EMP, Raman and infrared spectroscopy. The studied sample was collected from the Santa Ana pegmatite, Argentina. The mineral occurs as a primary mineral in lithium bearing pegmatite, in association with beausite and lithiophilite. The Raman spectrum is characterized by a very sharp intense Raman band at 980 cm�1 assigned to the PO3�4 symmetric stretching mode. Multiple Raman bands are observed in the PO3�4 antisymmetric stretching region, providing evidence for the existence of more than one phosphate unit in the structure of qingheiite and evidence for the reduction in symmetry of the phosphate units. This concept is affirmed by the number of bands in the m4 and m2 bending regions. No intensity was observed in the OH stretching region in the Raman spectrum but significant intensity is found in the infrared spectrum. Infrared bands are observed at 2917, 3195, 3414 and 3498 cm�1 are assigned to water stretching vibrations. It is suggested that some water is coordinating the metal cations in the structure of qingheiite.
Resumo:
Deep Raman Spectroscopy is a domain within Raman spectroscopy consisting of techniques that facilitate the depth profiling of diffusely scattering media. Such variants include Time-Resolved Raman Spectroscopy (TRRS) and Spatially-Offset Raman Spectroscopy (SORS). A recent study has also demonstrated the integration of TRRS and SORS in the development of Time-Resolved Spatially-Offset Raman Spectroscopy (TR-SORS). This research demonstrates the application of specific deep Raman spectroscopic techniques to concealed samples commonly encountered in forensic and homeland security at various working distances. Additionally, the concepts behind these techniques are discussed at depth and prospective improvements to the individual techniques are investigated. Qualitative and quantitative analysis of samples based on spectral data acquired from SORS is performed with the aid of multivariate statistical techniques. By the end of this study, an objective comparison is made among the techniques within Deep Raman Spectroscopy based on their capabilities. The efficiency and quality of these techniques are determined based on the results procured which facilitates the understanding of the degree of selectivity for the deeper layer exhibited by the individual techniques relative to each other. TR-SORS was shown to exhibit an enhanced selectivity for the deeper layer relative to TRRS and SORS whilst providing spectral results with good signal-to-noise ratio. Conclusive results indicate that TR-SORS is a prospective deep Raman technique that offers higher selectivity towards deep layers and therefore enhances the non-invasive analysis of concealed substances from close range as well as standoff distances.
Resumo:
A procedure for the evaluation of multiple scattering contributions is described, for deep inelastic neutron scattering (DINS) studies using an inverse geometry time-of-flight spectrometer. The accuracy of a Monte Carlo code DINSMS, used to calculate the multiple scattering, is tested by comparison with analytic expressions and with experimental data collected from polythene, polycrystalline graphite and tin samples. It is shown that the Monte Carlo code gives an accurate representation of the measured data and can therefore be used to reliably correct DINS data.
Resumo:
The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.
Resumo:
The mineral kulanite BaFe2Al2(PO4)3(OH)3, a barium iron aluminum phosphate, has been studied by using a combination of electron microscopy and vibrational spectroscopy. Scanning electron microscopy with EDX shows the mineral is homogenous with no other phases present. The Raman spectrum is dominated by an intense band at 1022 cm−1 assigned to the PO43-ν1 symmetric stretching mode. Low intensity Raman bands at 1076, 1110, 1146, 1182 cm−1 are attributed to the PO43-ν3 antisymmetric stretching vibrations. The infrared spectrum shows a complex spectral profile with overlapping bands. Multiple phosphate bending vibrations supports the concept of a reduction in symmetry of the phosphate anion. Raman spectrum at 3211, 3513 and 3533 cm−1 are assigned to the stretching vibrations of the OH units. Vibrational spectroscopy enables aspects on the molecular structure of kulanite to be assessed.
Resumo:
Recent work [S. Chaudhuri, J.T. Muckerman, J. Phys. Chem. B 109 (2005) 6952] reported that two Ti-substituted atoms on an Al(0 0 1) surface can form a catalytically active site for the dissociation of H2, but the diffusion barrier of atomic H away from Ti site is as high as 1.57 eV. By using ab initio density functional calculations, we found that two hydrogen molecules can dissociate on isolated-Ti atom doped Al(0 0 1) surface with small activation barriers (0.21 and 0.235 eV for first and second H2, respectively). Additionally, the diffusion barrier of atomic H away from Ti site is also moderate (0.47 eV). These results contribute further towards understanding the improved kinetics observed in recycling of hydrogen with Ti-doped NaAlH4.
Resumo:
The electron Volt Spectrometer (eVS) is an inverse geometry filter difference spectrometer that has been optimised to measure the single atom properties of condensed matter systems using a technique known as Neutron Compton Scattering (NCS) or Deep Inelastic Neutron Scattering (DINS). The spectrometer utilises the high flux of epithermal neutrons that are produced by the ISIS neutron spallation source enabling the direct measurement of atomic momentum distributions and ground state kinetic energies. In this paper the procedure that is used to calibrate the spectrometer is described. This includes details of the method used to determine detector positions and neutron flight path lengths as well as the determination of the instrument resolution. Examples of measurements on 3 different samples are shown, ZrH2, 4He and Sn which show the self-consistency of the calibration procedure.
Resumo:
Quantitative market data has traditionally been used throughout marketing and business as a tool to inform and direct design decisions. However, in our changing economic climate, businesses need to innovate and create products their customers will love. Deep customer insight methods move beyond just questioning customers and aims to provoke true emotional responses in order to reveal new opportunities that go beyond functional product requirements. This paper explores traditional market research methods and compares them to methods used to gain deep customer insights. This study reports on a collaborative research project with seven small to medium enterprises and four multi-national organisations. Firms were introduced to a design led innovation approach, and were taught the different methods to gain deep customer insights. Interviews were conducted to understand the experience and outcomes of pre-existing research methods and deep customer insight approaches. Findings concluded that deep customer insights were unlikely to be revealed through traditional market research techniques. The theoretical outcome of this study is a complementary methods matrix, providing guidance on appropriate research methods in accordance to a project’s timeline.