870 resultados para Agent-Based Models
Resumo:
Mainstream hardware is becoming parallel, heterogeneous, and distributed on every desk, every home and in every pocket. As a consequence, in the last years software is having an epochal turn toward concurrency, distribution, interaction which is pushed by the evolution of hardware architectures and the growing of network availability. This calls for introducing further abstraction layers on top of those provided by classical mainstream programming paradigms, to tackle more effectively the new complexities that developers have to face in everyday programming. A convergence it is recognizable in the mainstream toward the adoption of the actor paradigm as a mean to unite object-oriented programming and concurrency. Nevertheless, we argue that the actor paradigm can only be considered a good starting point to provide a more comprehensive response to such a fundamental and radical change in software development. Accordingly, the main objective of this thesis is to propose Agent-Oriented Programming (AOP) as a high-level general purpose programming paradigm, natural evolution of actors and objects, introducing a further level of human-inspired concepts for programming software systems, meant to simplify the design and programming of concurrent, distributed, reactive/interactive programs. To this end, in the dissertation first we construct the required background by studying the state-of-the-art of both actor-oriented and agent-oriented programming, and then we focus on the engineering of integrated programming technologies for developing agent-based systems in their classical application domains: artificial intelligence and distributed artificial intelligence. Then, we shift the perspective moving from the development of intelligent software systems, toward general purpose software development. Using the expertise maturated during the phase of background construction, we introduce a general-purpose programming language named simpAL, which founds its roots on general principles and practices of software development, and at the same time provides an agent-oriented level of abstraction for the engineering of general purpose software systems.
Resumo:
Reproductive skew theory seeks to integrate social and ecological factors thought to influence the division of reproduction among group-living animals. However, most reproductive skew models only examine interactions between individuals of the same sex. Here, we suggest that females can influence group stability and conflict among males by modifying their clutch size and may do so if they benefit from the presence of subordinate male helpers or from reduced conflict. We develop 3 models, based on concessions-based, restraint, and tug-of-war models, in which female clutch size is variable and ask when females will increase their clutch size above that which would be optimal in the absence of male-male conflict. In concessions-based and restraint models, females should increase clutch size above their optima if the benefits of staying for subordinate males are relatively low. Relatedness between males has no effect on clutch size. When females do increase clutch size, the division of reproduction between males is not influenced by relatedness and does not differ between restraint and concessions-based models. Both of these predictions are in sharp contrast to previous models. In tug-of-war models, clutch size is strongly influenced by relatedness between males, with the largest clutches, but the fewest surviving offspring, produced when males are unrelated. These 3 models demonstrate the importance of considering third-party interests in the decisions of group-living organisms.
Resumo:
As an important Civil Engineering material, asphalt concrete (AC) is commonly used to build road surfaces, airports, and parking lots. With traditional laboratory tests and theoretical equations, it is a challenge to fully understand such a random composite material. Based on the discrete element method (DEM), this research seeks to develop and implement computer models as research approaches for improving understandings of AC microstructure-based mechanics. In this research, three categories of approaches were developed or employed to simulate microstructures of AC materials, namely the randomly-generated models, the idealized models, and image-based models. The image-based models were recommended for accurately predicting AC performance, while the other models were recommended as research tools to obtain deep insight into the AC microstructure-based mechanics. A viscoelastic micromechanical model was developed to capture viscoelastic interactions within the AC microstructure. Four types of constitutive models were built to address the four categories of interactions within an AC specimen. Each of the constitutive models consists of three parts which represent three different interaction behaviors: a stiffness model (force-displace relation), a bonding model (shear and tensile strengths), and a slip model (frictional property). Three techniques were developed to reduce the computational time for AC viscoelastic simulations. It was found that the computational time was significantly reduced to days or hours from years or months for typical three-dimensional models. Dynamic modulus and creep stiffness tests were simulated and methodologies were developed to determine the viscoelastic parameters. It was found that the DE models could successfully predict dynamic modulus, phase angles, and creep stiffness in a wide range of frequencies, temperatures, and time spans. Mineral aggregate morphology characteristics (sphericity, orientation, and angularity) were studied to investigate their impacts on AC creep stiffness. It was found that aggregate characteristics significantly impact creep stiffness. Pavement responses and pavement-vehicle interactions were investigated by simulating pavement sections under a rolling wheel. It was found that wheel acceleration, steadily moving, and deceleration significantly impact contact forces. Additionally, summary and recommendations were provided in the last chapter and part of computer programming codes wree provided in the appendixes.
Resumo:
The aim of this study was to compare standard plaster models with their digital counterparts for the applicability of the Index of Complexity, Outcome, and Need (ICON). Generated study models of 30 randomly selected patients: 30 pre- (T(0)) and 30 post- (T(1)) treatment. Two examiners, calibrated in the ICON, scored the digital and plaster models. The overall ICON scores were evaluated for reliability and reproducibility using kappa statistics and reliability coefficients. The values for reliability of the total and weighted ICON scores were generally high for the T(0) sample (range 0.83-0.95) but less high for the T(1) sample (range 0.55-0.85). Differences in total ICON score between plaster and digital models resulted in mostly statistically insignificant values (P values ranging from 0.07 to 0.19), except for observer 1 in the T(1) sample. No statistically different values were found for the total ICON score on either plaster or digital models. ICON scores performed on computer-based models appear to be as accurate and reliable as ICON scores on plaster models.
Resumo:
Rechnergestützte Modellansätze, die Logistiksysteme gestalten und generieren, sind eine hochkomplexe Aufgabenstellung. Die bisher in der Praxis existierenden Planungs- und Steuerungsmodelle für Intralogistiksysteme weisen für die aktuellen und zukünftigen Anforderungen wie der Komplexitätsbewältigung, Reaktionsschnelligkeit und Anpassungsfähigkeit Schwachstellen auf. – Ein innovativer Ansatz, diesen Ansprüchen gerecht zu werden, stellen Multiagentensysteme dar. Mit ihrem dezentralen und modularen Charakter sind sie für ein komplexes Problem mit einem geringen Grad an Strukturiertheit geeignet. Außerdem ermöglichen diese computergestützten intelligenten Systeme den Anwendern eine einfache und aufwandsarme Handhabung.
Resumo:
In recent years, the ability to respond to real time changes in operations and reconfigurability in equipment are likely to become essential characteristics for next generation intralogistics systems as well as the level of automation, cost effectiveness and maximum throughput. In order to cope with turbulences and the increasing level of dynamic conditions, future intralogistics systems have to feature short reaction times, high flexibility in processes and the ability to adapt to frequent changes. The increasing autonomy and complexity in processes of today’s intralogistics systems requires new and innovative management approaches, which allow a fast response to (un)anticipated events and adaptation to changing environment in order to reduce the negative consequences of these events. The ability of a system to respond effectively a disruption depends more on the decisions taken before the event than those taken during or after. In this context, anticipatory change planning can be a usable approach for managers to make contingency plans for intralogistics systems to deal with the rapidly changing marketplace. This paper proposes a simulation-based decision making framework for the anticipatory change planning of intralogistics systems. This approach includes the quantitative assessments based on the simulation in defined scenarios as well as the analysis of performance availability that combines the flexibility corridors of different performance dimensions. The implementation of the approach is illustrated on a new intralogistics technology called the Cellular Transport System.
Resumo:
The social processes that lead to destructive behavior in celebratory crowds can be studied through an agent-based computer simulation. Riots are an increasingly common outcome of sports celebrations, and pose the potential for harm to participants, bystanders, property, and the reputation of the groups with whom participants are associated. Rioting cannot necessarily be attributed to the negative emotions of individuals, such as anger, rage, frustration and despair. For instance, the celebratory behavior (e.g., chanting, cheering, singing) during UConn’s “Spring Weekend” and after the 2004 NCAA Championships resulted in several small fires and overturned cars. Further, not every individual in the area of a riot engages in violence, and those who do, do not do so continuously. Instead, small groups carry out the majority of violent acts in relatively short-lived episodes. Agent-based computer simulations are an ideal method for modeling complex group-level social phenomena, such as celebratory gatherings and riots, which emerge from the interaction of relatively “simple” individuals. By making simple assumptions about individuals’ decision-making and behaviors and allowing actors to affect one another, behavioral patterns emerge that cannot be predicted by the characteristics of individuals. The computer simulation developed here models celebratory riot behavior by repeatedly evaluating a single algorithm for each individual, the inputs of which are affected by the characteristics of nearby actors. Specifically, the simulation assumes that (a) actors possess 1 of 5 distinct social identities (group memberships), (b) actors will congregate with actors who possess the same identity, (c) the degree of social cohesion generated in the social context determines the stability of relationships within groups, and (d) actors’ level of aggression is affected by the aggression of other group members. Not only does this simulation provide a systematic investigation of the effects of the initial distribution of aggression, social identification, and cohesiveness on riot outcomes, but also an analytic tool others may use to investigate, visualize and predict how various individual characteristics affect emergent crowd behavior.
Resumo:
In spite of the movement to turn political science into a real science, various mathematical methods that are now the staples of physics, biology, and even economics are thoroughly uncommon in political science, especially the study of civil war. This study seeks to apply such methods - specifically, ordinary differential equations (ODEs) - to model civil war based on what one might dub the capabilities school of thought, which roughly states that civil wars end only when one side’s ability to make war falls far enough to make peace truly attractive. I construct several different ODE-based models and then test them all to see which best predicts the instantaneous capabilities of both sides of the Sri Lankan civil war in the period from 1990 to 1994 given parameters and initial conditions. The model that the tests declare most accurate gives very accurate predictions of state military capabilities and reasonable short term predictions of cumulative deaths. Analysis of the model reveals the scale of the importance of rebel finances to the sustainability of insurgency, most notably that the number of troops required to put down the Tamil Tigers is reduced by nearly a full order of magnitude when Tiger foreign funding is stopped. The study thus demonstrates that accurate foresight may come of relatively simple dynamical models, and implies the great potential of advanced and currently unconventional non-statistical mathematical methods in political science.
Resumo:
State-of-the-art process-based models have shown to be applicable to the simulation and prediction of coastal morphodynamics. On annual to decadal temporal scales, these models may show limitations in reproducing complex natural morphological evolution patterns, such as the movement of bars and tidal channels, e.g. the observed decadal migration of the Medem Channel in the Elbe Estuary, German Bight. Here a morphodynamic model is shown to simulate the hydrodynamics and sediment budgets of the domain to some extent, but fails to adequately reproduce the pronounced channel migration, due to the insufficient implementation of bank erosion processes. In order to allow for long-term simulations of the domain, a nudging method has been introduced to update the model-predicted bathymetries with observations. The model-predicted bathymetry is nudged towards true states in annual time steps. Sensitivity analysis of a user-defined correlation length scale, for the definition of the background error covariance matrix during the nudging procedure, suggests that the optimal error correlation length is similar to the grid cell size, here 80-90 m. Additionally, spatially heterogeneous correlation lengths produce more realistic channel depths than do spatially homogeneous correlation lengths. Consecutive application of the nudging method compensates for the (stand-alone) model prediction errors and corrects the channel migration pattern, with a Brier skill score of 0.78. The proposed nudging method in this study serves as an analytical approach to update model predictions towards a predefined 'true' state for the spatiotemporal interpolation of incomplete morphological data in long-term simulations.
Resumo:
Within the regression framework, we show how different levels of nonlinearity influence the instantaneous firing rate prediction of single neurons. Nonlinearity can be achieved in several ways. In particular, we can enrich the predictor set with basis expansions of the input variables (enlarging the number of inputs) or train a simple but different model for each area of the data domain. Spline-based models are popular within the first category. Kernel smoothing methods fall into the second category. Whereas the first choice is useful for globally characterizing complex functions, the second is very handy for temporal data and is able to include inner-state subject variations. Also, interactions among stimuli are considered. We compare state-of-the-art firing rate prediction methods with some more sophisticated spline-based nonlinear methods: multivariate adaptive regression splines and sparse additive models. We also study the impact of kernel smoothing. Finally, we explore the combination of various local models in an incremental learning procedure. Our goal is to demonstrate that appropriate nonlinearity treatment can greatly improve the results. We test our hypothesis on both synthetic data and real neuronal recordings in cat primary visual cortex, giving a plausible explanation of the results from a biological perspective.
Resumo:
We propose a level set based variational approach that incorporates shape priors into edge-based and region-based models. The evolution of the active contour depends on local and global information. It has been implemented using an efficient narrow band technique. For each boundary pixel we calculate its dynamic according to its gray level, the neighborhood and geometric properties established by training shapes. We also propose a criterion for shape aligning based on affine transformation using an image normalization procedure. Finally, we illustrate the benefits of the our approach on the liver segmentation from CT images.
Resumo:
- Resumen La hipótesis que anima esta tesis doctoral es que algunas de las características del entorno urbano, en particular las que describen la accesibilidad de su red de espacio público, podrían estar relacionadas con la proporción de viajes a pie o reparto modal, que tiene cada zona o barrio de Madrid. Uno de los puntos de partida de dicha hipótesis que el entorno urbano tiene una mayor influencia sobre los viaje a pie que en sobre otros modos de transporte, por ejemplo que en los viajes de bicicleta o en transporte público; y es que parece razonable suponer que estos últimos van a estar más condicionadas por ejemplo por la disponibilidad de vías ciclistas, en el primer caso, o por la existencia de un servicio fiable y de calidad, en el segundo. Otra de las motivaciones del trabajo es que la investigación en este campo de la accesibilidad del espacio público, en concreto la denominada “Space Syntax”, ha probado en repetidas ocasiones la influencia de la red de espacio público en cómo se distribuye la intensidad del tráfico peatonal por la trama urbana, pero no se han encontrado referencias de la influencia de dicho elemento sobre el reparto modal. De acuerdo con la hipótesis y con otros trabajos anteriores se propone una metodología basada en el análisis empírico y cuantitativo. Su objetivo es comprobar si la red de espacio público, independientemente de otras variables como los usos del suelo, incluso de las variables de ajenas entorno no construido, como las socioeconómicas, está o no relacionada estadísticamente con la proporción de peatones viajes en las zonas urbanas. Las técnicas estadísticas se utilizan para comprobar sistemáticamente la asociación de las variables del entorno urbano, denominadas variables independientes, con el porcentaje de viajes a pie, la variable dependiente. En términos generales, la metodología es similar a la usada en otros trabajos en este campo como los de CERVERÓ y KOCKLEMAN (1997), CERVERÓ y DUNCAN (2003), o para los que se utilizan principalmente en la revisión general de TRB (2005) o, más recientemente, en ZEGRAS (2006) o CHATMAN (2009). Otras opciones metodológicas, como los métodos de preferencias declaradas (ver LOUVIERE, HENSHER y SWAIT, 2000) o el análisis basado en agentes (PENN & TURNER, 2004) fueron descartados, debido a una serie de razones, demasiado extensas para ser descritas aquí. El caso de estudio utilizado es la zona metropolitana de Madrid, abarcándola hasta la M-50, es decir en su mayor parte, con un tamaño aproximado de 31x34 Km y una población de 4.132.820 habitantes (aproximadamente el 80% de la población de la región). Las principales fuentes de datos son la Encuesta Domiciliaria de Movilidad de 2004 (EDM04), del Consorcio Regional de Transportes de Madrid que es la última disponible (muestra: > 35.000 familias,> 95.000 personas), y un modelo espacial del área metropolitana, integrando el modelo para calcular los índices de Space Syntax y un Sistema de Información Geográfica (SIG). La unidad de análisis, en este caso las unidades espaciales, son las zonas de transporte (con una población media de 7.063 personas) y los barrios (con una población media de 26.466 personas). Las variables del entorno urbano son claramente el centro del estudio. Un total de 20 índices (de 21) se seleccionan de entre los más relevantes encontrados en la revisión de la producción científica en este campo siendo que, al mismo tiempo, fueran accesibles. Nueve de ellos se utilizan para describir las características de los usos del suelo, mientras que otros once se usan para describir la red de espacios públicos. Estos últimos incluyen las variables de accesibilidad configuracional, que son, como se desprende de su título, el centro del estudio propuesto. La accesibilidad configuracional es un tipo especial de accesibilidad que se basa en la configuración de la trama urbana, según esta fue definida por HILLIER (1996), el autor de referencia dentro de esta línea de investigación de Space Syntax. Además se incluyen otras variables de la red de espacio público más habituales en los estudios de movilidad, y que aquí se denominan características geométricas de los elementos de la red, tales como su longitud, tipo de intersección, conectividad, etc. Por último se incluye además una variable socioeconómica, es decir ajena al entorno urbano, para evaluar la influencia de los factores externos, pues son varios los que pueden tener un impacto en la decisión de caminar (edad, género, nivel de estudios, ingresos, tasa de motorización, etc.). La asociación entre las variables se han establecido usando análisis de correlación (bivariante) y modelos de análisis multivariante. Las primeras se calculan entre por pares entre cada una de las 21 variables independientes y la dependiente, el porcentaje de viajes a pie. En cuanto a los segundos, se han realizado tres tipos de estudios: modelo multivariante general lineal, modelo multivariante general curvilíneo y análisis discriminante. Todos ellos son capaces de generar modelos de asociación entre diversas variables, pudiéndose de esta manera evaluar con bastante precisión en qué medida cada modelo reproduce el comportamiento de la variable dependiente, y además, el peso o influencia de cada variable en el modelo respecto a las otras. Los resultados fundamentales del estudio se expresan en dos modelos finales alternativos, que demuestran tener una significativa asociación con el porcentaje de viajes a pie (R2 = 0,6789, p <0,0001), al explicar las dos terceras partes de su variabilidad. En ellos, y en general en todo el estudio realizado, se da una influencia constante de tres índices en particular, que quedan como los principales. Dos de ellos, de acuerdo con muchos de los estudios previos, corresponden a la densidad y la mezcla de usos del suelo. Pero lo más novedoso de los resultados obtenidos es que el tercero es una medida de la accesibilidad de la red de espacio público, algo de lo que no había referencias hasta ahora. Pero, ¿cuál es la definición precisa y el peso relativo de cada uno en el modelo, es decir, en la variable independiente? El de mayor peso en la mayor parte de los análisis realizados es el índice de densidad total (n º residentes + n º puestos de trabajo + n º alumnos / Ha). Es decir, una densidad no sólo de población, sino que incluye algunas de las actividades más importantes que pueden darse una zona para generar movilidad a pie. El segundo que mayor peso adquiere, llegando a ser el primero en alguno de los análisis estadísticos efecturados, es el índice de accesibuilidad configuracional denominado integración de radio 5. Se trata de una medida de la accesibilidad de la zona, de su centralidad, a la escala de, más un menor, un distrito o comarca. En cuanto al tercero, obtiene una importancia bastante menor que los anteriores, y es que representa la mezcla de usos. En concreto es una medida del equilibrio entre los comercios especializados de venta al por menor y el número de residentes (n º de tiendas especializadas en alimentación, bebidas y tabaco / n º de habitantes). Por lo tanto, estos resultados confirman buena parte de los de estudios anteriores, especialmente los relativas a los usos del suelo, pero al mismo tiempo, apuntan a que la red de espacio público podría tener una influir mayor de la comprobada hasta ahora en la proporción de peatones sobre el resto de modos de transportes. Las razones de por qué esto puede ser así, se discuten ampliamente en las conclusiones. Finalmente se puede precisar que dicha conclusión principal se refiere a viajes de una sola etapa (no multimodales) que se dan en los barrios y zonas del área metropolitana de Madrid. Por supuesto, esta conclusión tiene en la actualidad, una validez limitada, ya que es el resultado de un solo caso — Abstract The research hypothesis for this Ph.D. Thesis is that some characteristics of the built environment, particularly those describing the accessibility of the public space network, could be associated with the proportion of pedestrians in all trips (modal split), found in the different parts of a city. The underlying idea is that walking trips are more sensitive to built environment than those by other transport modes, such as for example those by bicycle or by public transport, which could be more conditioned by, e.g. infrastructure availability or service frequency and quality. On the other hand, it has to be noted that the previously research on this field, in particular within Space Syntax’s where this study can be referred, have tested similar hypothesis using pedestrian volumes as the dependent variable, but never against modal split. According to such hypothesis, research methodology is based primarily on empirical quantitative analysis, and it is meant to be able to assess whether public space network, no matter other built environment and non-built environment variables, could have a relationship with the proportion of pedestrian trips in urban areas. Statistical techniques are used to check the association of independent variables with the percentage of walking in all trips, the dependent one. Broadly speaking this methodology is similar to that of previous studies in the field such as CERVERO&KOCKLEMAN (1997), CERVERO & DUNCAN (2003), or to those used mainly in the general review of T.R.B. (2005) or, more recently in ZEGRAS (2006) or CHATMAN (2009). Other methodological options such as stated choice methods (see LOUVIERE, HENSHER & SWAIT, 2000) or agent based analysis (PENN & TURNER, 2004), were discarded, due to a number of reasons, too long to be described here. The case study is not the entire Madrid’s metropolitan area, but almost (4.132.820 inhabitants, about 80% of region´s population). Main data sources are the Regional Mobility Home Based Survey 2004 (EDM04), which is the last available (sample: >35.000 families, > 95.000 individuals), and a spatial model of the metropolitan area, developed using Space Syntax and G.I.S. techniques. The analysis unit, in this case spatial units, are both transport zones (mean population = 7.063) and neighborhoods (mean population = 26.466). The variables of the built environment are clearly the core of the study. A total of 20 (out of 21) are selected from among those found in the literature while, at the same time, being accessible. Nine out of them are used to describe land use characteristics while another eleven describe the network of public spaces. Latter ones include configurational accessibility or Space Syntax variables. This is a particular sort of accessibility related with the concept of configuration, by HILLIER (1996), one of the main authors of Space Syntax, But it also include more customary variables used in mobility research to describe the urban design or spatial structure (here public space network), which here are called geometric characteristics of the such as its length, type of intersection, conectivity, density, etc. Finally a single socioeconomic variable was included in order to assess the influence non built environment factors that also may have an impact on walking (age, income, motorization rate, etc.). The association among variables is worked out using bi-variate correlation analysis and multivariate-analysis. Correlations are calculated among the 21 independent variables and the dependent one, the percentage of walking trips. Then, three types of multi-variate studies are run: general linear, curvilinear and discriminant multi-variate analysis. The latter are fully capable of generating complex association models among several variables, assessing quite precisely to what extent each model reproduces the behavior of the dependent variable, and also the weight or influence of each variable in the model. This study’s results show a consistent influence of three particular indexes in the two final alternative models of the multi-variate study (best, R2=0,6789, p<0,0000). Not surprisingly, two of them correspond to density and mix of land uses. But perhaps more interesting is that the third one is a measure of the accessibility of the public space network, a variable less important in the literature up to now. Additional precisions about them and their relative weight could also be of some interest. The density index is not only about population but includes most important activities in an area (nº residents + nº jobs+ nº students/Ha). The configurational index (radius 5 integration) is a measure of the accessibility of the area, i.e. centrality, at the scale of, more a less, a district. Regarding the mix of land uses index, this one is a measure of the balance between retail, in fact local basic retail, and the number of residents (nº of convenience shops / nº of residents). Referring to their weights, configurational index (radius 5 integration) gets the higher standardized coefficient of the final equation. However, in the final equations, there are a higher number of indexes coming from the density or land use mix categories than from public space network enter. Therefore, these findings seem to support part of the field’s knowledge, especially those concerning land uses, but at the same time they seem to bring in the idea that the configuration of the urban grid could have an influence in the proportion of walkers (as a part of total trips on any transport mode) that do single journey trips in the neighborhoods of Madrid, Spain. Of course this conclusion has, at present, a limited validity since it’s the result of a single case. The reasons of why this can be so, are discussed in the last part of the thesis.
Resumo:
La predicción de energía eólica ha desempeñado en la última década un papel fundamental en el aprovechamiento de este recurso renovable, ya que permite reducir el impacto que tiene la naturaleza fluctuante del viento en la actividad de diversos agentes implicados en su integración, tales como el operador del sistema o los agentes del mercado eléctrico. Los altos niveles de penetración eólica alcanzados recientemente por algunos países han puesto de manifiesto la necesidad de mejorar las predicciones durante eventos en los que se experimenta una variación importante de la potencia generada por un parque o un conjunto de ellos en un tiempo relativamente corto (del orden de unas pocas horas). Estos eventos, conocidos como rampas, no tienen una única causa, ya que pueden estar motivados por procesos meteorológicos que se dan en muy diferentes escalas espacio-temporales, desde el paso de grandes frentes en la macroescala a procesos convectivos locales como tormentas. Además, el propio proceso de conversión del viento en energía eléctrica juega un papel relevante en la ocurrencia de rampas debido, entre otros factores, a la relación no lineal que impone la curva de potencia del aerogenerador, la desalineación de la máquina con respecto al viento y la interacción aerodinámica entre aerogeneradores. En este trabajo se aborda la aplicación de modelos estadísticos a la predicción de rampas a muy corto plazo. Además, se investiga la relación de este tipo de eventos con procesos atmosféricos en la macroescala. Los modelos se emplean para generar predicciones de punto a partir del modelado estocástico de una serie temporal de potencia generada por un parque eólico. Los horizontes de predicción considerados van de una a seis horas. Como primer paso, se ha elaborado una metodología para caracterizar rampas en series temporales. La denominada función-rampa está basada en la transformada wavelet y proporciona un índice en cada paso temporal. Este índice caracteriza la intensidad de rampa en base a los gradientes de potencia experimentados en un rango determinado de escalas temporales. Se han implementado tres tipos de modelos predictivos de cara a evaluar el papel que juega la complejidad de un modelo en su desempeño: modelos lineales autorregresivos (AR), modelos de coeficientes variables (VCMs) y modelos basado en redes neuronales (ANNs). Los modelos se han entrenado en base a la minimización del error cuadrático medio y la configuración de cada uno de ellos se ha determinado mediante validación cruzada. De cara a analizar la contribución del estado macroescalar de la atmósfera en la predicción de rampas, se ha propuesto una metodología que permite extraer, a partir de las salidas de modelos meteorológicos, información relevante para explicar la ocurrencia de estos eventos. La metodología se basa en el análisis de componentes principales (PCA) para la síntesis de la datos de la atmósfera y en el uso de la información mutua (MI) para estimar la dependencia no lineal entre dos señales. Esta metodología se ha aplicado a datos de reanálisis generados con un modelo de circulación general (GCM) de cara a generar variables exógenas que posteriormente se han introducido en los modelos predictivos. Los casos de estudio considerados corresponden a dos parques eólicos ubicados en España. Los resultados muestran que el modelado de la serie de potencias permitió una mejora notable con respecto al modelo predictivo de referencia (la persistencia) y que al añadir información de la macroescala se obtuvieron mejoras adicionales del mismo orden. Estas mejoras resultaron mayores para el caso de rampas de bajada. Los resultados también indican distintos grados de conexión entre la macroescala y la ocurrencia de rampas en los dos parques considerados. Abstract One of the main drawbacks of wind energy is that it exhibits intermittent generation greatly depending on environmental conditions. Wind power forecasting has proven to be an effective tool for facilitating wind power integration from both the technical and the economical perspective. Indeed, system operators and energy traders benefit from the use of forecasting techniques, because the reduction of the inherent uncertainty of wind power allows them the adoption of optimal decisions. Wind power integration imposes new challenges as higher wind penetration levels are attained. Wind power ramp forecasting is an example of such a recent topic of interest. The term ramp makes reference to a large and rapid variation (1-4 hours) observed in the wind power output of a wind farm or portfolio. Ramp events can be motivated by a broad number of meteorological processes that occur at different time/spatial scales, from the passage of large-scale frontal systems to local processes such as thunderstorms and thermally-driven flows. Ramp events may also be conditioned by features related to the wind-to-power conversion process, such as yaw misalignment, the wind turbine shut-down and the aerodynamic interaction between wind turbines of a wind farm (wake effect). This work is devoted to wind power ramp forecasting, with special focus on the connection between the global scale and ramp events observed at the wind farm level. The framework of this study is the point-forecasting approach. Time series based models were implemented for very short-term prediction, this being characterised by prediction horizons up to six hours ahead. As a first step, a methodology to characterise ramps within a wind power time series was proposed. The so-called ramp function is based on the wavelet transform and it provides a continuous index related to the ramp intensity at each time step. The underlying idea is that ramps are characterised by high power output gradients evaluated under different time scales. A number of state-of-the-art time series based models were considered, namely linear autoregressive (AR) models, varying-coefficient models (VCMs) and artificial neural networks (ANNs). This allowed us to gain insights into how the complexity of the model contributes to the accuracy of the wind power time series modelling. The models were trained in base of a mean squared error criterion and the final set-up of each model was determined through cross-validation techniques. In order to investigate the contribution of the global scale into wind power ramp forecasting, a methodological proposal to identify features in atmospheric raw data that are relevant for explaining wind power ramp events was presented. The proposed methodology is based on two techniques: principal component analysis (PCA) for atmospheric data compression and mutual information (MI) for assessing non-linear dependence between variables. The methodology was applied to reanalysis data generated with a general circulation model (GCM). This allowed for the elaboration of explanatory variables meaningful for ramp forecasting that were utilized as exogenous variables by the forecasting models. The study covered two wind farms located in Spain. All the models outperformed the reference model (the persistence) during both ramp and non-ramp situations. Adding atmospheric information had a noticeable impact on the forecasting performance, specially during ramp-down events. Results also suggested different levels of connection between the ramp occurrence at the wind farm level and the global scale.
Resumo:
One of the fundamental aspects in the adaptation of the teaching to the European higher education is changing based models of teacher education to models based on student learning. In this work we present an educational experience developed with the teaching method based on the case method, with a clearly multidisciplinary. The experience has been developed in the teaching of analysis and verification of safety rails. This is a multidisciplinary field that presents great difficulties during their teaching. The use of the case method has given good results in the competences achieved by students
Resumo:
This paper describes the impact of electric mobility on the transmission grid in Flanders region (Belgium), using a micro-simulation activity based models. These models are used to provide temporal and spatial estimation of energy and power demanded by electric vehicles (EVs) in different mobility zones. The increment in the load demand due to electric mobility is added to the background load demand in these mobility areas and the effects over the transmission substations are analyzed. From this information, the total storage capacity per zone is evaluated and some strategies for EV aggregator are proposed, allowing the aggregator to fulfill bids on the electricity markets.