996 resultados para Age, calcium carbonate stratigraphy, after Pflaumann (1975)
Resumo:
Calcium carbonate is one of the most important biominerals, and it is the main constituent of pearls, seashells, and teeth. The in vitro crystallization of calcium carbonate using different organic matrices as templates has been reported. In this work, the growth of calcium carbonate thin films on special organic matrices consisting of layer-by-layer (LbL) polyelectrolyte films deposited on a pre-formed phospholipid Langmuir-Blodgett (LB) film has been studied. Two types of randomly coiled polyelectrolytes have been used: lambda-carrageenan and poly(acrylic acid). A precoating comprised of LB films has been prepared by employing a negatively charged phospholipid, the sodium salt of dimyristoilphosphatidyl acid (DMPA), or a zwitterionic phospholipid, namely dimyristoilphosphatidylethanolamine (DMPE). This approach resulted in the formation of particulate calcium carbonate continuous films with different morphologies, particle sizes, and roughness, as revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystalline structure of the calcium carbonate particles was analyzed by Raman spectroscopy. The randomly coiled conformation of the polyelectrolytes seems to be the main reason for the formation of continuous films rather than CaCO3 isolated crystals. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Stable carbon isotopic fractionation during calcium carbonate precipitation induced by urease-catalysed hydrolysis of urea was experimentally investigated in artificial water at a constant temperature of 30 degrees C. Carbon isotope fractionation during urea hydrolysis follows a Rayleigh distillation trend characterized by a C-13-enrichment factor of -20 to -22 parts per thousand. CaCO3 precipitate is up to 17.9 parts per thousand C-13-depleted relative to the urea substrate (-48.9 +/- 0.07 parts per thousand). Initial CaCO3 precipitate forms close to isotopic equilibrium with dissolved inorganic carbon. Subsequent precipitation occurs at -2 to -3 parts per thousand offset from isotopic equilibrium, suggesting that the initial delta C-13 value of CaCO3 is reset through dissolution followed by reprecipitation with urease molecules playing a role in offsetting the delta C-13 value of CaCO3 from isotopic equilibrium. Potentially, this isotopic systematics may provide a tool for the diagnosis of ureolytically-formed carbonate cements used as sealing agent. Moreover, it may serve as a basis to develop a carbon isotope tool for the quantification of ureolytically-induced CO2 sequestration. Finally, it suggests carbon isotope disequilibrium as a hallmark of past enzymatic activity in ancient microbial carbonate formation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The geochemical behaviour of uranium and thorium in metalliferous sediments and hydrothermal deposits has been widely studied and the main results have been summarised by Boström and Rydell. These isotopes may be used to clarify how the metal-rich solutions are introduced into sediment cover and seawater. Using radiochemistry followed by alpha spectrometry, we have measured uranium concentrations as high as several hundred p.p.m., which must clearly be associated with ocean ridge thermal activity, in sediments interbedded between the basaltic basement and the green hydrothermal mud at DSDP Site 424. These high uranium concentrations indicate the path followed by the hydrothermal fluid which, debouching at the sediment-water interface, formed the green mud.
Resumo:
Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface-water d18O records of Neogloboquadrina pachyderma (left coiled); hence the surface-water d18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 yrs). For the Labrador Sea, sediment core logs contain important information about deep-water current velocities and also reflect the variable input of IRD from different sources as inferred from grain-size analysis, benthic d18O, the relation of density and p-wave velocity, and magnetic susceptibility. For the last glacial, faster deep-water currents which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted for a several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deep-water currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly after, while the abrupt atmospheric temperature rise happened after a larger time lag of >=1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial time scales but decoupling at orbital time scales.
Resumo:
Thin but discrete pelagic limestone beds intercalated among the black mudstones near the top of the extensive Mesozoic black shale sequence of the Falkland Plateau are reminiscent of similar occurrences in the central and North Atlantic and may be cyclic in nature. They have been studied via carbonate, organic carbon, stable isotope, nannofloral, and ultrastructural analysis in an attempt to determine their mode of origin. Nannofossil diversity and preservation suggest that selective dissolution or diagenesis did not produce the interbedded coccolith-rich and coccolith-poor layers, nor did blooms of opportunistic species play a role. Stable isotope measurements of carbonate do not adequately constrain the origin of the cyclicity; however, the d13C data suggest that the more nannofossil-rich intervals may be due to higher nutrient supply and overturn of deeper waters at the site rather than influxes of well-oxygenated waters into an otherwise anoxic environment. Such an explanation is in accord with the nannofloral evidence
Resumo:
This paper presents a compilation of stable-isotope and percentage-of-carbonate data for the Upper Cretaceous/ lower Tertiary hemipelagic sediments from DSDP Leg 73, Site 524.
Resumo:
Regional consequences of the biotic extinctions and of the changes in biological productivity that occurred at the time of the Cretaceous/Tertiary (K/T) boundary were investigated by comparison of organic matter in sediments from three southern Tethyan margin locations. Organic matter characterization comprised Rock-Eval pyrolysis and organic carbon measurements. Low concentrations of organic matter precluded additional detailed determinations. At all three locations, the organic matter has been microbially reworked and evidently was deposited in oxygenated marine environments.
Resumo:
At DSDP Sites 534 (Central Atlantic) and 535 and 540 (Gulf of Mexico), and in the Vocontian Basin (France), Lower Cretaceous deposits show a very pronounced alternation of limestone and marl. This rhythm characterizes the pelagic background sedimentation and is independent of detritic intercalations related to contour and turbidity currents. Bed-scale cycles, estimated to be 6000-26,000 yr. long, comprise major and minor units. Their biological and mineralogic components, burrowing, heavy isotopes C and O, and some geochemical indicators, vary in close correlation with CaCO3 content. Vertical changes of frequency and asymmetry of the cycles are connected with fluctuations of the sedimentation rate. Plots of cycle thickness ("cyclograms") permit detailed correlations of the three areas and improve the stratigraphic subdivision of Neocomian deposits at the DSDP sites. Small-scale alternations, only observed in DSDP cores, comprise centimetric to millimetric banding and millimetric to micrometric lamination, here interpreted as varvelike alternations between laminae that are rich in calcareous plankton and others rich in clay. The laminations are estimated to correspond to cycles approximately 1,3, and 13 yr. in duration. The cyclic patterns appear to be governed by an interplay of continental and oceanic processes. Oceanic controls express themselves in variations of the biogenic carbonate flux, which depends on variations of such elements as temperature, oxygenation, salinity, and nutrient content. Continental controls modulate the influxes of terrigenous material, organic matter, and nutrients derived from cyclic erosion on land. Among the possible causes of cyclic sedimentation, episodic carbonate dissolution has been ruled out in favor of climatic fluctuations with a large range of periods. Such fluctuations are consistent with the great geographic extension shown by alternation controls and with the continuous spectrum of scales that characterizes limestone-marl cycles. The climatic variations induced by the Earth's orbital parameters (Milankovitch cycles) could be connected to bed-interbed alternations.
Resumo:
Sand-silt-clay distribution was determined at Scripps on samples collected at the time the cores were split and described. The sediment classification used here is that of Shepard (1954); sand, silt, and clay boundaries are determined on the basis of the Wentworth (1922) scale. Thus the sand, silt, and clay fractions are composed of particles whose diameters range from 2000 to 62.5 µm, 62.5 to 3.91 µm, and less than 3.91 µm, respectively. This classification is applied regardless of sediment type and origin.
Resumo:
Past changes in sea-surface productivity in the Oyashio Current are evaluated on the basis of abundances of biological constituents in sediments from Leg 186 sites. Organic carbon contents at Sites 1150 and 1151 are moderate (0.5 to 1.5 wt%) and have an algal origin as indicated by low C/N ratios (<10) and by carbon isotopic compositions ranging from -23.4 to -21.3. A decreasing trend in organic carbon contents, carbon isotope ratios, and C/N ratios occurs with depth at both sites, probably as a consequence of diagenetic degradation of organic matter. Mass accumulation rates (MARs) determined for organic carbon and carbonates at Sites 1150 and 1151 show an abrupt increase between ~5 and 7 Ma. Similar results have been reported for sites in the Indian Ocean and the Pacific Ocean for the same time interval. As it has been previously suggested, the observed increase in MAR for both carbonate and organic carbon at Leg 186 sites probably resulted from augmented nutrient supply either from continental sources or from a more vigorous ocean circulation.
Resumo:
Sand-silt-clay distribution was determined on 10-cm**3 sediment samples collected at the time the cores were split and described. The sediment classification used here is that of Shepard (1954), with the sand, silt, and clay boundaries based on the Wentworth (1922) scale. Thus the sand, silt, and clay fractions are composed of particles whose diameters are 2000 to 62.5 µm, 62.5 to 3.91 µm, and less than 3.91 µm, respectively. This classification is applied without regard to sediment type and origin; therefore, the sediment names used in this table may differ from those used elsewhere in this volume; e.g., a silt composed of nannofossils may be called a nannofossil ooze in a site chapter.
Resumo:
Visual-domain diffuse reflectance data collected aboard the JOIDES Resolution with the Minolta spectrometer CM-2002 during Ocean Drilling Program Leg 172 have been used to estimate successfully the carbonate content of sediments. Calibration equations were developed for each site and for each lithostratigraphic unit (or subunit at Site 1063) using multiple linear regression on raw as well as pretreated reflectance spectra (i.e., first-order derivation and squaring of raw reflectance spectra) for a total of 4141 direct carbonate measurements. The root-mean-square errors of 4% to 7% are within the range of previous estimates using diffuse reflectance data and are acceptable for the general extensive range of carbonate contents (i.e., 0-70 wt%) that characterize sedimentation at Leg 172 sites.
Resumo:
Percent CaCO3 was determined in selected samples aboard the ship by the carbonate-bomb technique (Müller and Gastner, 1971). Results of these analyses are listed in Table 1 and plotted in Figures 1, 3, 4, and 5 as plus signs (+). Samples collected specifically for analyses of CaCO3 and organic carbon were analyzed at three shore-based laboratories. Concentrations of total carbon, organic carbon, and CaCO3 were determined in some samples at the DSDP sediment laboratory, using a Leco carbon analyzer, by personnel of the U.S. Geological Survey, under the supervision of T. L. Valuer. Most of these samples were collected from lithologic units containing relatively high concentrations of organic carbon. Sample procedures are outlined in Boyce and Bode (1972). Precision and accuracy are both ±0.3% absolute for total carbon, ±0.06% absolute for organic carbon, and ±3% absolute for CaCO3.