985 resultados para Aerial photography in oceanography.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Scotia Sea has been a focus of biological- and physical oceanographic study since the Discovery expeditions in the early 1900s. It is a physically energetic region with some of the highest levels of productivity in the Southern Ocean. It is also a region within which there have been greater than average levels of change in upper water column temperature. We describe the results of three cruises transecting the central Scotia Sea from south to north in consecutive years and covering spring, summer and autumn periods. We also report on some community level syntheses using both current-day and historical data from this region. A wide range of parameters were measured during the field campaigns, covering the physical oceanography of the region, air–sea CO2 fluxes, macro- and micronutrient concentrations, the composition and biomass of the nano-, micro- and mesoplankton communities, and the distribution and biomass of Antarctic krill and mesopelagic fish. Process studies examined the effect of iron-stress on the physiology of primary producers, reproduction and egestion in Antarctic krill and the transfer of stable isotopes between trophic layers, from primary consumers up to birds and seals. Community level syntheses included an examination of the biomass-spectra, food-web modelling, spatial analysis of multiple trophic layers and historical species distributions. The spatial analyses in particular identified two distinct community types: a northern warmer water community and a southern cold community, their boundary being broadly consistent with the position of the Southern Antarctic Circumpolar Current Front (SACCF). Temperature and ice cover appeared to be the dominant, over-riding factors in driving this pattern. Extensive phytoplankton blooms were a major feature of the surveys, and were persistent in areas such as South Georgia. In situ and bioassay measurements emphasised the important role of iron inputs as facilitators of these blooms. Based on seasonal DIC deficits, the South Georgia bloom was found to contain the strongest seasonal carbon uptake in the ice-free zone of the Southern Ocean. The surveys also encountered low-production, iron-limited regions, a situation more typical of the wider Southern Ocean. The response of primary and secondary consumers to spatial and temporal heterogeneity in production was complex. Many of the life-cycles of small pelagic organisms showed a close coupling to the seasonal cycle of food availability. For instance, Antarctic krill showed a dependence on early, non-ice-associated blooms to facilitate early reproduction. Strategies to buffer against environmental variability were also examined, such as the prevalence of multiyear life-cycles and variability in energy storage levels. Such traits were seen to influence the way in which Scotia Sea communities were structured, with biomass levels in the larger size classes being higher than in other ocean regions. Seasonal development also altered trophic function, with the trophic level of higher predators increasing through the course of the year as additional predator-prey interactions emerged in the lower trophic levels. Finally, our studies re-emphasised the role that the simple phytoplankton-krill-higher predator food chain plays in this Southern Ocean region, particularly south of the SACCF. To the north, alternative food chains, such as those involving copepods, macrozooplankton and mesopelagic fish, were increasingly important. Continued ocean warming in this region is likely to increase the prevalence of such alternative such food chains with Antarctic krill predicted to move southwards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to determine the role of light on the succession of the phytoplankton community during the spring bloom in the northwestern Mediterranean Sea. To this end, three successive Lagrangian experiments were carried out between March and April 2003. The three experiments correspond to distinct phases of the bloom development (pre-bloom, bloom peak and post-bloom, respectively) and therefore to different trophic conditions. Phytoplankton (sampled on a daily scale) was grouped in size-based classes (pico and nano+micro) each of them were characterised in terms of chemotaxonomic composition, primary production and photophysiological properties. The phytoplankton community evolved with time changing in both size-class dominance and specie/group dominance within each size class. The bloom peak was characterised by highly dynamic condition (i.e. vertical mixing) and by the dominance of both small (pico) and large (nano and micro) diatoms, as a result of their capacity to photoacclimate to changing light regimes (‘physiological plasticity’). Concluding, we suggest that the physiological adaptation to light is the main factor driving the succession of the phytoplankton community during the first phases of the bloom (until the onset of thermal stratification) in the western Mediterranean Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is unambiguous and its effects are clearly detected in all functional units of the Earth system. This study presents new analyses of sea-surface temperature changes and show that climate change is affecting ecosystems of the North Atlantic. Changes are seen from phytoplankton to zooplankton to fish and are modifying the dominance of species and the structure, the diversity and the functioning of marine ecosystems. Changes also range from phenological to biogeographical shifts and have involved in some regions of the Atlantic abrupt ecosystem shifts. These alterations reflect a response of pelagic ecosystems to a warmer temperature regime. Mechanisms are complex because they are nonlinear exhibiting tipping points and varying in space and time. Sensitivity of organisms to temperature changes is high, implicating that a small temperature modification can have sustained ecosystem effects. Implications of these changes for biogeochemical cycles are discussed. Two observed changes detected in the North Sea that could have opposite effects on carbon cycle are discussed. Increase in phytoplankton, as inferred from the phytoplankton colour index derived from the Continuous Plankton Recorder (CPR) survey, has been detected in the North Sea. This pattern has been accompanied by a reduction in the abundance of the herbivorous species Calanus finmarchicus. This might have reduced the grazing pressure and increase diatomaceous ‘fluff’, therefore carbon export in the North Sea. Therefore, it could be argued that the biological carbon pump might increase in this region with sea warming. In the meantime, however, the mean size of organisms (calanoid copepods) has dropped. Such changes have implications for the turnover time of biogenic carbon in plankton organisms and the mean residence time of particulate carbon they produce. The system characterising the warmer period is more based on recycling and less on export. The increase in the minimum turnover time indicates an increase in the ecosystem metabolism, which can be considered as a response of the pelagic ecosystems to climate warming. This phenomenon could reduce carbon export. These two opposite patterns of change are examples of the diversity of mechanisms and pathways the ecosystems may exhibit with climate change. Oversimplification of current biogeochemical models, often due to lack of data and biological understanding, could lead to wrong projection on the direction ecosystems and therefore some biogeochemical cycles might take in a warmer world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Centropages typicus is a temperate neritic-coastal species of the North Atlantic Oceans, generally found between the latitudes of the Mediterranean and the Norwegian Sea. Therefore, the species experiences a large number of environments and adjusts its life cycle in response to changes in key abiotic parameters such as temperature. Using data from the Continuous Plankton Recorder (CPR) Survey, we review the macroecology of C. typicus and factors that influence its spatial distribution, phenology and year-to-year to decadal variability. The ecological preferences are identified and quantified. Mechanisms that allow the species to occur in such different environments are discussed and hypotheses are proposed as to how the species adapts to its environment. We show that temperature and both quantity and quality of phytoplankton are important factors explaining the space and time variability of C. typicus. These results show that C. typicus will not respond only to temperature increase in the region but also to changes in phytoplankton abundance, structure and composition and timing of occurrence. Methods such as a decision tree can help to forecast expected changes in the distribution of this species with hydro-climatic forcing. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mean intensity of the NE Atlantic upwelling system at its northern limit (Galicia, NW Spain) decreased during the last 40 years. At the same time, warming of surface waters was detected. Plankton biomass and composition are expected to reflect such changes when integrated over large time and space scales. In this study, biomass, abundance and species composition of phyto- and zooplankton were analysed to search for significant patterns of annual change and relations with upwelling intensity. Regionally integrated, mostly offshore, data were obtained from the Continuous Plankton Recorder (since 1958) whereas coastal data from Vigo and A Coruña came from the Radiales program (since 1987). No significant trends were found in phytoplankton biomass at either regional or local scales. However, there was a significant decrease in diatom abundance at regional scales and also of large species at local scales. Zooplankton abundance (mainly copepods) significantly decreased offshore but increased near the coast. Biomass of zooplankton also increased near the coast, with the fastest rates in the south. Warm-water species, like Temora stylifera, were increasingly abundant at both regional and local scales. Significant correlations between upwelling intensity and plankton suggest that climatic effects were delayed for several years. Our results indicate that the effects of large scale climatic trends on plankton communities are being effectively modulated within the pelagic ecosystem in this upwelling region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four time-series of copepod species biomass in the north of Spain were contrasted to demonstrate spatial autocorrelation of local communities and their responses to short-term local and regional variability in oceanographic conditions. The series represented coastal and oceanic environments along a marked gradient of influence of seasonal upwelling from Galicia to the Mar Cantábrico (S Bay of Biscay), and each one included at least 10 years of continuous data collected at monthly frequency. Community composition (i.e. species number and diversity) was very consistent through the region, but local variations in the presence of new species and the relative proportions of common species allowed for the characterisation of the response to the environment at each site. Small-sized species were more frequent near the coast. A few species, however, captured the main patterns of variability in all series. Calanus helgolandicus and Acartia (mainly Acartia clausi) were generally the main contributors to total biomass, while other species as Paracalanus parvus and Clausocalanus spp. were important only at some locations. Most copepod indices were positively correlated with upwelling, either considering the whole community (biomass, species richness and diversity) or individual species, but only in the coastal series analysed since 1991. Copepods in the nearby ocean, however, showed negative correlations with upwelling in the period 1960–1986. The effects of upwelling may have been modulated by local factors, as showed by the increases in biomass, number of species and diversity in associations with increases in sea surface temperature in Galicia, while in the Mar Cantábrico only the warming-tolerant species increased and those typical of upwelling decreased. Density stratification of the water column was associated with decreases in total copepod biomass in Galicia, while it favoured the increase in species richness in the Mar Cantábrico. Nearly all significant responses of copepods to environmental variability were delayed by up to 5 months, showing the importance of considering time-lags in the analysis of temporal responses of zooplankton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review current knowledge and understanding of the biology and ecology of Centropages typicus in the European shelf-seas (e.g. North Sea, English Channel and Bay of Biscay). Our study is based on observations at seven coastal time-series stations as well as on the Continuous Plankton Recorder dataset. This paper focuses on the influence of the environmental parameters (e.g. temperature and Chla) on the life cycle and distribution of C typicus and provides a comparison with its congeneric species C. hamatus and C. chierchiae in the study area. Data on abundance, seasonality and egg production have been used to define the temperature and chlorophyll optima for occurrence and reproduction of Centropages spp. within this region of the European shelf-seas. (C) 2007 Elsevier Ltd. All rights reserved.