945 resultados para Adaptive Control
Resumo:
This paper describes a general approach for real time traffic management support using knowledge based models. Recognizing that human intervention is usually required to apply the current automatic traffic control systems, it is argued that there is a need for an additional intelligent layer to help operators to understand traffic problems and to make the best choice of strategic control actions that modify the assumption framework of the existing systems.
Resumo:
Este proyecto se centra en la implementación de un sistema de control activo de ruido mediante algoritmos genéticos. Para ello, se ha tenido en cuenta el tipo de ruido que se quiere cancelar y el diseño del controlador, parte fundamental del sistema de control. El control activo de ruido sólo es eficaz a bajas frecuencias, hasta los 250 Hz, justo para las cuales los elementos pasivos pierden efectividad, y en zonas o recintos de pequeñas dimensiones y conductos. El controlador ha de ser capaz de seguir todas las posibles variaciones del campo acústico que puedan producirse (variaciones de fase, de frecuencia, de amplitud, de funciones de transferencia electro-acústicas, etc.). Su funcionamiento está basado en algoritmos FIR e IIR adaptativos. La elección de un tipo de filtro u otro depende de características tales como linealidad, causalidad y número de coeficientes. Para que la función de transferencia del controlador siga las variaciones que surgen en el entorno acústico de cancelación, tiene que ir variando el valor de los coeficientes del filtro mediante un algoritmo adaptativo. En este proyecto se emplea como algoritmo adaptativo un algoritmo genético, basado en la selección biológica, es decir, simulando el comportamiento evolutivo de los sistemas biológicos. Las simulaciones se han realizado con dos tipos de señales: ruido de carácter aleatorio (banda ancha) y ruido periódico (banda estrecha). En la parte final del proyecto se muestran los resultados obtenidos y las conclusiones al respecto. Summary. This project is focused on the implementation of an active noise control system using genetic algorithms. For that, it has been taken into account the noise type wanted to be canceled and the controller design, a key part of the control system. The active noise control is only effective at low frequencies, up to 250 Hz, for which the passive elements lose effectiveness, and in small areas or enclosures and ducts. The controller must be able to follow all the possible variations of the acoustic field that might be produced (phase, frequency, amplitude, electro-acoustic transfer functions, etc.). It is based on adaptive FIR and IIR algorithms. The choice of a kind of filter or another depends on characteristics like linearity, causality and number of coefficients. Moreover, the transfer function of the controller has to be changing filter coefficients value thought an adaptive algorithm. In this project a genetic algorithm is used as adaptive algorithm, based on biological selection, simulating the evolutionary behavior of biological systems. The simulations have been implemented with two signal types: random noise (broadband) and periodic noise (narrowband). In the final part of the project the results and conclusions are shown.
Resumo:
Nowadays robots have made their way into real applications that were prohibitive and unthinkable thirty years ago. This is mainly due to the increase in power computations and the evolution in the theoretical field of robotics and control. Even though there is plenty of information in the current literature on this topics, it is not easy to find clear concepts of how to proceed in order to design and implement a controller for a robot. In general, the design of a controller requires of a complete understanding and knowledge of the system to be controlled. Therefore, for advanced control techniques the systems must be first identified. Once again this particular objective is cumbersome and is never straight forward requiring of great expertise and some criteria must be adopted. On the other hand, the particular problem of designing a controller is even more complex when dealing with Parallel Manipulators (PM), since their closed-loop structures give rise to a highly nonlinear system. Under this basis the current work is developed, which intends to resume and gather all the concepts and experiences involve for the control of an Hydraulic Parallel Manipulator. The main objective of this thesis is to provide a guide remarking all the steps involve in the designing of advanced control technique for PMs. The analysis of the PM under study is minced up to the core of the mechanism: the hydraulic actuators. The actuators are modeled and experimental identified. Additionally, some consideration regarding traditional PID controllers are presented and an adaptive controller is finally implemented. From a macro perspective the kinematic and dynamic model of the PM are presented. Based on the model of the system and extending the adaptive controller of the actuator, a control strategy for the PM is developed and its performance is analyzed with simulation.
Resumo:
Growth of a zone of maize (Zea mays L.) coleoptiles and pea (Pisum sativum L.) internodes was greatly suppressed when the organ was decapitated or ringed at an upper position with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) mixed with lanolin. The transport of apically applied 3H-labeled indole-3-acetic acid (IAA) was similarly inhibited by NPA. The growth suppressed by NPA or decapitation was restored by the IAA mixed with lanolin and applied directly to the zone, and the maximal capacity to respond to IAA did not change after NPA treatment, although it declined slightly after decapitation. The growth rate at IAA saturation was greater than the rate in intact, nontreated plants. It was concluded that growth is limited and controlled by auxin supplied from the apical region. In maize coleoptiles the sensitivity to IAA increased more than 3 times when the auxin level was reduced over a few hours with NPA treatment. This result, together with our previous result that the maximal capacity to respond to IAA declines in pea internodes when the IAA level is enhanced for a few hours, indicates that the IAA concentration-response relationship is subject to relatively slow adaptive regulation by IAA itself. The spontaneous growth recovery observed in decapitated maize coleoptiles was prevented by an NPA ring placed at an upper position of the stump, supporting the view that recovery is due to regenerated auxin-producing activity. The sensitivity increase also appeared to participate in an early recovery phase, causing a growth rate greater than in intact plants.
Resumo:
1Recent studies demonstrated the sensitivity of northern forest ecosystems to changes in the amount and duration of snow cover at annual to decadal time scales. However, the consequences of snowfall variability remain uncertain for ecological variables operating at longer time scales, especially the distributions of forest communities. 2The Great Lakes region of North America offers a unique setting to examine the long-term effects of variable snowfall on forest communities. Lake-effect snow produces a three-fold gradient in annual snowfall over tens of kilometres, and dramatic edaphic variations occur among landform types resulting from Quaternary glaciations. We tested the hypothesis that these factors interact to control the distributions of mesic (dominated by Acer saccharum, Tsuga canadensis and Fagus grandifolia) and xeric forests (dominated by Pinus and Quercus spp.) in northern Lower Michigan. 3We compiled pre-European-settlement vegetation data and overlaid these data with records of climate, water balance and soil, onto Landtype Association polygons in a geographical information system. We then used multivariate adaptive regression splines to model the abundance of mesic vegetation in relation to environmental controls. 4Snowfall is the most predictive among five variables retained by our model, and it affects model performance 29% more than soil texture, the second most important variable. The abundance of mesic trees is high on fine-textured soils regardless of snowfall, but it increases with snowfall on coarse-textured substrates. Lake-effect snowfall also determines the species composition within mesic forests. The weighted importance of A. saccharum is significantly greater than of T. canadensis or F. grandifolia within the lake-effect snowbelt, whereas T. canadensis is more plentiful outside the snowbelt. These patterns are probably driven by the influence of snowfall on soil moisture, nutrient availability and fire return intervals. 5Our results imply that a key factor dictating the spatio-temporal patterns of forest communities in the vast region around the Great Lakes is how the lake-effect snowfall regime responds to global change. Snowfall reductions will probably cause a major decrease in the abundance of ecologically and economically important species, such as A. saccharum.
Resumo:
At head of title: Microwave Research Institute, Polytechnic Institute of Brooklyn, Systems and Controls Group, R-688-58, PIB-616, contract no. DA-30-069-ORD-1560.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Immunotherapy of tumours using T cells expanded in vitro has met with mixed clinical success suggesting that a greater understanding of tumour/T-cell interaction is required. We used a HPV16E7 oncoprotein-based mouse tumour model to study this further. In this study, we demonstrate that a HPV16E7 tumour passes through at least three stages of immune susceptibility over time. At the earliest time point, infusion of intravenous immune cells fails to control tumour growth although the same cells given subcutaneously at the tumour site are effective. In a second stage, the tumour becomes resistant to subcutaneous infusion of cells but is now susceptible to both adjuvant activated and HPV16E7-specific immune cells transferred intravenously. In the last phase, the tumour is susceptible to intravenous transfer of HPV16E7-specific cells, but not adjuvant-activated immune cells. The requirement for IFN-gamma and perforin also changes with each stage of tumour development. Our data suggest that effective adoptive T-cell therapy of tumour will need to be matched with the stage of tumour development.
Resumo:
Photon counting induces an effective non-linear optical phase shift in certain states derived by linear optics from single photons. Although this non-linearity is non-deterministic, it is sufficient in principle to allow scalable linear optics quantum computation (LOQC). The most obvious way to encode a qubit optically is as a superposition of the vacuum and a single photon in one mode-so-called 'single-rail' logic. Until now this approach was thought to be prohibitively expensive (in resources) compared to 'dual-rail' logic where a qubit is stored by a photon across two modes. Here we attack this problem with real-time feedback control, which can realize a quantum-limited phase measurement on a single mode, as has been recently demonstrated experimentally. We show that with this added measurement resource, the resource requirements for single-rail LOQC are not substantially different from those of dual-rail LOQC. In particular, with adaptive phase measurements an arbitrary qubit state a alpha/0 > + beta/1 > can be prepared deterministically.
Resumo:
A new approach to optimisation is introduced based on a precise probabilistic statement of what is ideally required of an optimisation method. It is convenient to express the formalism in terms of the control of a stationary environment. This leads to an objective function for the controller which unifies the objectives of exploration and exploitation, thereby providing a quantitative principle for managing this trade-off. This is demonstrated using a variant of the multi-armed bandit problem. This approach opens new possibilities for optimisation algorithms, particularly by using neural network or other adaptive methods for the adaptive controller. It also opens possibilities for deepening understanding of existing methods. The realisation of these possibilities requires research into practical approximations of the exact formalism.
Resumo:
We introduce a technique for quantifying and then exploiting uncertainty in nonlinear stochastic control systems. The approach is suboptimal though robust and relies upon the approximation of the forward and inverse plant models by neural networks, which also estimate the intrinsic uncertainty. Sampling from the resulting Gaussian distributions of the inversion based neurocontroller allows us to introduce a control law which is demonstrably more robust than traditional adaptive controllers.
Resumo:
We consider the direct adaptive inverse control of nonlinear multivariable systems with different delays between every input-output pair. In direct adaptive inverse control, the inverse mapping is learned from examples of input-output pairs. This makes the obtained controller sub optimal, since the network may have to learn the response of the plant over a larger operational range than necessary. Moreover, in certain applications, the control problem can be redundant, implying that the inverse problem is ill posed. In this paper we propose a new algorithm which allows estimating and exploiting uncertainty in nonlinear multivariable control systems. This approach allows us to model strongly non-Gaussian distribution of control signals as well as processes with hysteresis. The proposed algorithm circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider.
Resumo:
Purpose: The purpose of this paper is to investigate the use of 802.11e MAC to resolve the transmission control protocol (TCP) unfairness. Design/methodology/approach: The paper shows how a TCP sender may adapt its transmission rate using the number of hops and the standard deviation of recently measured round-trip times to address the TCP unfairness. Findings: Simulation results show that the proposed techniques provide even throughput by providing TCP fairness as the number of hops increases over a wireless mesh network (WMN). Research limitations/implications: Future work will examine the performance of TCP over routing protocols, which use different routing metrics. Other future work is scalability over WMNs. Since scalability is a problem with communication in multi-hop, carrier sense multiple access (CSMA) will be compared with time division multiple access (TDMA) and a hybrid of TDMA and code division multiple access (CDMA) will be designed that works with TCP and other traffic. Finally, to further improve network performance and also increase network capacity of TCP for WMNs, the usage of multiple channels instead of only a single fixed channel will be exploited. Practical implications: By allowing the tuning of the 802.11e MAC parameters that have previously been constant in 802.11 MAC, the paper proposes the usage of 802.11e MAC on a per class basis by collecting the TCP ACK into a single class and a novel congestion control method for TCP over a WMN. The key feature of the proposed TCP algorithm is the detection of congestion by measuring the fluctuation of RTT of the TCP ACK samples via the standard deviation, plus the combined the 802.11e AIFS and CWmin allowing the TCP ACK to be prioritised which allows the TCP ACKs will match the volume of the TCP data packets. While 802.11e MAC provides flexibility and flow/congestion control mechanism, the challenge is to take advantage of these features in 802.11e MAC. Originality/value: With 802.11 MAC not having flexibility and flow/congestion control mechanisms implemented with TCP, these contribute to TCP unfairness with competing flows. © Emerald Group Publishing Limited.
Resumo:
This thesis describes the investigation of an adaptive method of attenuation control for digital speech signals in an analogue-digital environment and its effects on the transmission performance of a national telecommunication network. The first part gives the design of a digital automatic gain control, able to operate upon a P.C.M. signal in its companded form and whose operation is based upon the counting of peaks of the digital speech signal above certain threshold levels. A study was ma.de of a digital automatic gain control (d.a.g.c.) in open-loop configuration and closed-loop configuration. The former was adopted as the means for carrying out the automatic control of attenuation. It was simulated and tested, both objectively and subjectively. The final part is the assessment of the effects on telephone connections of a d.a.g.c. that introduces gains of 6 dB or 12 dB. This work used a Telephone Connection Assessment Model developed at The University of Aston in Birmingham. The subjective tests showed that the d.a.g.c. gives advantage for listeners when the speech level is very low. The benefit is not great when speech is only a little quieter than preferred. The assessment showed that, when a standard British Telecom earphone is used, insertion of gain is desirable if speech voltage across the earphone terminals is below an upper limit of -38 dBV. People commented upon the presence of an adaptive-like effect during the tests. This could be the reason why they voted against the insertion of gain at level only little quieter than preferred, when they may otherwise have judged it to be desirable. A telephone connection with a d.a.g.c. in has a degree of difficulty less than half of that without it. The score Excellent plus Good is 10-30% greater.
Resumo:
The behaviour of control functions in safety critical software systems is typically bounded to prevent the occurrence of known system level hazards. These bounds are typically derived through safety analyses and can be implemented through the use of necessary design features. However, the unpredictability of real world problems can result in changes in the operating context that may invalidate the behavioural bounds themselves, for example, unexpected hazardous operating contexts as a result of failures or degradation. For highly complex problems it may be infeasible to determine the precise desired behavioural bounds of a function that addresses or minimises risk for hazardous operation cases prior to deployment. This paper presents an overview of the safety challenges associated with such a problem and how such problems might be addressed. A self-management framework is proposed that performs on-line risk management. The features of the framework are shown in context of employing intelligent adaptive controllers operating within complex and highly dynamic problem domains such as Gas-Turbine Aero Engine control. Safety assurance arguments enabled by the framework necessary for certification are also outlined.