940 resultados para Active components in spice extracts
Resumo:
Cardiac hypertrophy is associated with altered expression of the components of the cardiac renin-angiotensin system (RAS). While in vitro data suggest that local mechanical stimuli serve as important regulatory modulators of cardiac RAS activity, no in vivo studies have so far corroborated these observations. The aims of this study were to (i) examine the respective influence of local, mechanical versus systemic, soluble factors on the modulation of cardiac RAS gene expression in vivo; (ii) measure gene expression of all known components of the RAS simultaneously; and (iii) establish sequence information and an assay system for the RAS of the dog, one of the most important model organisms in cardiovascular research. We therefore examined a canine model of right ventricular hypertrophy and failure (RVHF) in which the right ventricle (RV) is hemodynamically loaded, the left ventricle (LV) is hemodynamically unloaded, while both are exposed to the same circulating milieu of soluble factors. Using specific competitive PCR assays, we found that RVHF was associated with significant increases in RV mRNA levels of angiotensin converting enzyme and angiotensin II type 2 receptor, and with significant decreases of RV expression of chymase and the angiotensin II type 1 receptor, while RV angiotensinogen and renin remained unchanged. All components remained unchanged in the LV. We conclude that (i) dissociated regional regulation of RAS components in RV and LV indicates modulation by local, mechanical, not soluble, systemic stimuli; (ii) components of the cardiac RAS are independently and differentially regulated; and (iii) opposite changes in the expression of angiotensin converting enzyme and chymase, and of angiotensin II type I and angiotensin II type 2 receptors, may indicate different physiological roles of these RAS components in RVHF.
Resumo:
SoxR protein is known to function both as a sensor and as a transcriptional activator for a superoxide response regulon in Escherichia coli. The activity of SoxR was tested by its ability to enable the transcription of its target gene, soxS, in vitro. The activity of the oxidized form was lost when its [2Fe-2S] clusters were reduced by dithionite under anaerobic conditions, and it was rapidly restored by autooxidation. This result is consistent with the hypothesis that induction of the regulon is effected by the univalent oxidation of the Fe-S centers of SoxR. In vivo, this oxidation may be caused by an alteration of the redox balance of electron chain intermediates that normally maintains soxR in an inactive, reduced state. Oxidized SoxR was about twice as effective as reduced SoxR in protecting the soxS operator from endonucleolytic cleavage. However, this difference could not account for a greater than 50-fold difference in their activities and therefore could not support a model in which oxidation activates SoxR by enabling it to bind to DNA. NADPH, ferredoxin, flavodoxin, or ferredoxin (flavodoxin):NADP+ reductase could not reduce SoxR directly in vitro at a measurable rate. The midpoint potential for SoxR was measured at -283 mV.
Resumo:
The activity of maturation-promoting factor (MPF), a protein kinase complex composed of p34cdc2 and cyclin B, is undetectable during interphase but rises abruptly at the G2/M transition to induce mitosis. After the synthesis of cyclin B, the suppression of MPF activity before mitosis has been attributed to the phosphorylation of p34cdc2 on sites (threonine-14 and tyrosine-15) that inhibit its catalytic activity. We previously showed that the activity of the mitotic p34cdc2/cyclin B complex is rapidly suppressed when added to interphase Xenopus extracts that lack endogenous cyclin B. Here we show that a mutant of p34cdc2 that cannot be inhibited by phosphorylation (threonine-14-->alanine, tyrosine-15-->phenylalanine) is also susceptible to inactivation, demonstrating that inhibitory mechanisms independent of threonine-14 and tyrosine-15 phosphorylation must exist. We have partially characterized this inhibitory pathway as one involving a reversible binding inhibitor of p34cdc2/cyclin B that is tightly associated with cell membranes. Kinetic analysis suggests that this inhibitor, in conjunction with the kinases that mediate the inhibitory phosphorylations on p34cdc2, maintains the interphase state in Xenopus; it may play an important role in the exact timing of the G2/M transition.
Resumo:
Transgenic mice and sheep secrete only low levels of human factor IX in their milk because of an aberrant splicing of the transgene RNA in the mammary gland. Removal of the cryptic 3' splice site prevents this splicing and leads to the production of relatively high levels of factor IX. The purified protein is fully active showing that the mammary gland is capable of the efficient post-translational modification of this protein and that transgenic animals are a suitable means of its production.
Resumo:
We examined the functional consequences of cellular transformation of rat IAR-2 epithelial cells, by a mutant N-ras oncogene, on the dynamics of active lamellae, structures that play an important role in cell motility, adhesion, and surface-receptor capping. Lamellar activity was assessed by measuring the rate of outer-edge pseudopodial activity and by analyzing the motility of Con A-coated beads placed on lamellar surfaces with optical tweezers. Although transformation dramatically affected the shape and size of active cellular lamellae, there was little detectable effect on either pseudopodial activity or bead movement. To investigate the potential relationship between functional lamellar activity and the microtubule cytoskeleton, lamellar activity was examined in nontransformed and transformed cells treated with the microtubule-disrupting drug nocodazole. In the absence of microtubules, transformed cells were less polarized and possessed decreased rates of pseudopodial and bead motility. On the basis of these observations, it is suggested that ras-induced transformation of epithelial cells consists of two cytoskeletal modifications: overall diminished actin cytoskeletal dynamics in lamellae and reorganization of the microtubule cytoskeleton that directs pseudopodial activity to smaller polarized lamellae.
Resumo:
Robust and reproducible metallized nano/microstructured surfaces of polymeric surfaces have been successfully prepared by direct laser interference patterning (DLIP) of commercial polymeric films followed by sputtering of metallic thin films. The SERS spectra for 2-thioaniline adsorbed on a structured polycarbonate surfaces covered with a gold or platinum film showed a ca. three order of magnitude enhancement over a flat surface with the same metal film. The method here reported is suitable for mass production of substrates for SERS since large areas (several cm2) can be structured in ca. 1–5 s.
Resumo:
Surface active substances (SAS) in the water column were measured by voltammetry using the electrochemical probe o-nitrophenol (ONP) during EIFEX, a mesoscale open ocean iron enrichment experiment in the Southern Ocean. SAS levels were low throughout the experiment (<0.005 - 0.03 mg/L Triton X-100 equivalents). Initially SAS was extremely low in the photic zone, but as the phytoplankton bloom developed concentrations markedly increased throughout the upper 100 m (~0.02 mg/L Triton X-100 equivalents). Highest concentrations of SAS (>0.02 mg/L Triton X-100 equivalents) were found at the end of the bloom particularly at density discontinuities where organic material may accumulate. Exudates from diatoms appeared to be the major source of SAS during EIFEX, either from direct extracellular release or in the action of being grazed upon by zooplankton.