945 resultados para Acoustic Arrays, Array Signal Processing, Calibration, Speech Enhancement


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esse trabalho tem por objetivo o desenvolvimento de um sistema inteligente para detecção da queima no processo de retificação tangencial plana através da utilização de uma rede neural perceptron multi camadas, treinada para generalizar o processo e, conseqüentemente, obter o limiar de queima. em geral, a ocorrência da queima no processo de retificação pode ser detectada pelos parâmetros DPO e FKS. Porém esses parâmetros não são eficientes nas condições de usinagem usadas nesse trabalho. Os sinais de emissão acústica e potência elétrica do motor de acionamento do rebolo são variáveis de entrada e a variável de saída é a ocorrência da queima. No trabalho experimental, foram empregados um tipo de aço (ABNT 1045 temperado) e um tipo de rebolo denominado TARGA, modelo ART 3TG80.3 NVHB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents recent improvements in a density measurement cell with a double-element transducer that can eliminate diffraction effects. A new mechanical design combined with the use of more appropriate materials has resulted in better parallelism between interfaces, more robust assembly, and chemical resistance. A novel method of signal processing, named energy method, is introduced to obtain the reflection coefficient, reducing sensitivity to noise and improving accuracy. The measurement cell operation is verified both theoretically, using an acoustic wave propagation model, and experimentally, using homogeneous liquids with different densities. The accuracy in the density measurement is 0.2% when compared with the measurements made with a pycnometer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we deal with the problem of feature selection by introducing a new approach based on Gravitational Search Algorithm (GSA). The proposed algorithm combines the optimization behavior of GSA together with the speed of Optimum-Path Forest (OPF) classifier in order to provide a fast and accurate framework for feature selection. Experiments on datasets obtained from a wide range of applications, such as vowel recognition, image classification and fraud detection in power distribution systems are conducted in order to asses the robustness of the proposed technique against Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and a Particle Swarm Optimization (PSO)-based algorithm for feature selection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oral administration is the most convenient route for drug therapy. The knowledge of the gastrointestinal transit and specific site for drug delivery is a prerequisite for development of dosage forms. The aim of this work was to demonstrate that is possible to monitor the disintegration process of film-coated magnetic tablets by multi-sensor alternate current Biosusceptometry (ACB) in vivo and in vitro. This method is based on the recording of signals produced by the magnetic tablet using a seven sensors array and signal-processing techniques. The disintegration was confirmed by signals analysis in healthy human volunteers' measurements and in vitro experiments. Results showed that ACB is efficient to characterize the disintegration of dosage forms in the stomach, being a research tool for the development of new pharmaceutical dosage forms. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An accurate switched-current (SI) memory cell and suitable for low-voltage low-power (LVLP) applications is proposed. Information is memorized as the gate-voltage of the input transistor, in a tunable gain-boosting triode-transconductor. Additionally, four-quadrant multiplication between the input voltage to the transconductor regulation-amplifier (X-operand) and the stored voltage (Y-operand) is provided. A simplified 2 x 2-memory array was prototyped according to a standard 0.8 mum n-well CMOS process and 1.8-V supply. Measured current-reproduction error is less than 0.26% for 0.25 muA less than or equal to I-SAMPLE less than or equal to 0.75 muA. Standby consumption is 6.75 muW per cell @I-SAMPLE = 0.75 muA. At room temperature, leakage-rate is 1.56 nA/ms. Four-quadrant multiplier (4QM) full-scale operands are 2x(max) = 320 mV(pp) and 2y(max). = 448 mV(pp), yielding a maximum output swing of 0.9 muA(pp). 4QM worst-case nonlinearity is 7.9%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a technique for oriented texture classification which is based on the Hough transform and Kohonen's neural network model. In this technique, oriented texture features are extracted from the Hough space by means of two distinct strategies. While the first operates on a non-uniformly sampled Hough space, the second concentrates on the peaks produced in the Hough space. The described technique gives good results for the classification of oriented textures, a common phenomenon in nature underlying an important class of images. Experimental results are presented to demonstrate the performance of the new technique in comparison, with an implemented technique based on Gabor filters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main purpose of this paper is to investigate theoretically and experimentally the use of family of Polynomial Powers of the Sigmoid (PPS) Function Networks applied in speech signal representation and function approximation. This paper carries out practical investigations in terms of approximation fitness (LSE), time consuming (CPU Time), computational complexity (FLOP) and representation power (Number of Activation Function) for different PPS activation functions. We expected that different activation functions can provide performance variations and further investigations will guide us towards a class of mappings associating the best activation function to solve a class of problems under certain criteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The estimation of the number of people in an area under surveillance is very important for the problem of crowd monitoring. When an area reaches an occupation level greater than the projected one, people's safety can be in danger. This paper describes a new technique for crowd density estimation based on Minkowski fractal dimension. Fractal dimension has been widely used to characterize data texture in a large number of physical and biological sciences. The results of our experiments show that fractal dimension can also be used to characterize levels of people congestion in images of crowds. The proposed technique is compared with a statistical and a spectral technique, in a test study of nearly 300 images of a specific area of the Liverpool Street Railway Station, London, UK. Results obtained in this test study are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work it is introduced a new approach to calculate the density of liquids in terms of the energies of the acoustic signals. This method is compared to other methods in the time domain (peak-to-peak amplitudes) and frequency domain magnitudes at a single frequency. It is used a measurement cell based on a multiple reflection technique, and it is developed an acoustic model for the cell. Simulations and experiments using several liquids are presented, showing that the energy method a less sensitive to noise than the other techniques. The relative errors in the density are smaller than 0.2% when compared to the values measured with a pycnometer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents some results of the application on Evolvable Hardware (EHW) in the area of voice recognition. Evolvable Hardware is able to change inner connections, using genetic learning techniques, adapting its own functionality to external condition changing. This technique became feasible by the improvement of the Programmable Logic Devices. Nowadays, it is possible to have, in a single device, the ability to change, on-line and in real-time, part of its own circuit. This work proposes a reconfigurable architecture of a system that is able to receive voice commands to execute special tasks as, to help handicapped persons in their daily home routines. The idea is to collect several voice samples, process them through algorithms based on Mel - Ceptrais theory to obtain their numerical coefficients for each sample, which, compose the universe of search used by genetic algorithm. The voice patterns considered, are limited to seven sustained Portuguese vowel phonemes (a, eh, e, i, oh, o, u).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The swallowing disturbers are defined as oropharyngeal dysphagia when present specifies signals and symptoms that are characterized for alterations in any phases of swallowing. Early diagnosis is crucial for the prognosis of patients with dysphagia and the potential to diagnose dysphagia in a noninvasive manner by assessing the sounds of swallowing is a highly attractive option for the dysphagia clinician. This study proposes a new framework for oropharyngeal dysphagia identification, having two main contributions: a new set of features extract from swallowing signal by discrete wavelet transform and the dysphagia classification by a novel pattern classifier called OPF. We also employed the well known SVM algorithm in the dysphagia identification task, for comparison purposes. We performed the experiments in two sub-signals: the first was the moment of the maximal peak (MP) of the signal and the second is the swallowing apnea period (SAP). The OPF final accuracy obtained were 85.2% and 80.2% for the analyzed signals MP and SAP, respectively, outperforming the SVM results. ©2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A target tracking algorithm able to identify the position and to pursuit moving targets in video digital sequences is proposed in this paper. The proposed approach aims to track moving targets inside the vision field of a digital camera. The position and trajectory of the target are identified by using a neural network presenting competitive learning technique. The winning neuron is trained to approximate to the target and, then, pursuit it. A digital camera provides a sequence of images and the algorithm process those frames in real time tracking the moving target. The algorithm is performed both with black and white and multi-colored images to simulate real world situations. Results show the effectiveness of the proposed algorithm, since the neurons tracked the moving targets even if there is no pre-processing image analysis. Single and multiple moving targets are followed in real time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The applications of Automatic Vowel Recognition (AVR), which is a sub-part of fundamental importance in most of the speech processing systems, vary from automatic interpretation of spoken language to biometrics. State-of-the-art systems for AVR are based on traditional machine learning models such as Artificial Neural Networks (ANNs) and Support Vector Machines (SVMs), however, such classifiers can not deal with efficiency and effectiveness at the same time, existing a gap to be explored when real-time processing is required. In this work, we present an algorithm for AVR based on the Optimum-Path Forest (OPF), which is an emergent pattern recognition technique recently introduced in literature. Adopting a supervised training procedure and using speech tags from two public datasets, we observed that OPF has outperformed ANNs, SVMs, plus other classifiers, in terms of training time and accuracy. ©2010 IEEE.