916 resultados para Acidic pH
Resumo:
This in vitro study evaluated the effect of a prolonged erosive pH cycling on the superficial microhardness change (SMHC) and the erosive wear of different restorative materials. Eighty enamel specimens with prepared cavities of 1.5 x 1.5 mm were randomly divided into eight groups according to the restorative materials used for the fillings (RMGI - resin-modified glass-ionomer, CGI - conventional glass-ionomer, CR- composite resin, A - amalgam) and immersion media used (ERO - erosive medium or SAL - artificial saliva). During 35 days, half of the specimens were immersed in a cola drink (ERO), for 5 min, three times a day, and they remained in SAL between the erosive cycles. The other half of the specimens was immersed in SAL only, for the entire experimental period (control). Data were tested for significant differences by anova and Tukey`s tests (P < 0.05). Scanning electron microscopy images were made to illustrate the enamel erosive wear and restorative materials alterations. The mean SMHC (%) and mean erosive wear (mu m) of the materials were: RMGI-ERO (30/0.5); CGI-ERO (37/0.5); CR-ERO (-0.3/0.3); A-ERO (-4/0.3); RMGI-SAL (4/0.4); CGI-SAL (-6/0.4); CR-SAL (-3/0.2) and A-SAL (2/0.4). Scanning electron microscopy images showed pronounced enamel erosive wear on groups submitted to erosive pH cycling when compared with groups maintained in saliva. In conclusion, the prolonged pH cycling promoted significantly higher alterations (SMHC and erosive wear) on the glass-ionomer cements than the CR and amalgam.
Resumo:
This in vitro study evaluated the effect of erosive pH cycling on the percentage of surface micro-hardness change (%SMHC) and wear of different restorative materials and bovine enamel restored with these materials. Eighty enamel specimens were randomly divided into eight groups according to the restorative materials and immersion media used: GI/GV-resin-modifled glass-ionomer, GII/GVI-conventional glass-ionomer, GIII/GVII-resin composite and GIV/GVIII-amalgam. Over a period of seven days, groups GI to GIV were immersed in a cola drink (ERO) for 5 minutes, 3x/day and kept in artificial saliva between erosive cycles. Groups GV to GVIII were immersed in artificial saliva (SAL) throughout the entire experimental period (control). Data were tested for significant differences using ANOVA and Tukey`s tests (p < 0.05). For %SMHC, considering the restorative materials, no significant differences were detected among the materials and immersion media. Mean wear was higher for the resin modified glass ionomer cement when compared to conventional cement, but those materials did not significantly differ from the others. For enamel analyses, erosive pH cycling promoted higher wear and %SMHC compared to saliva. There were no significant differences in wear and %SMHC of enamel around the different restorative materials, regardless of the distance from the restorative material (50, 150 or 300 mu m). In conclusion, there were only subtle differences among the materials, and these differences were not able to protect the surrounding enamel from erosion.
Resumo:
Introduction: To evaluate calcium ion release and pH of Sealer 26 (S26) (Dentsply, Rio de Janeiro, RJ, Brazil), white mineral trioxide aggregate (MTA), Endo CPM Sealer (CPM1) (EGEO SRL Bajo licencia MTM Argentina SA, Buenos Aires, Argentina), Endo CPM Sealer in a thicker consistency (CPM 2), and zinc oxide and eugenol cement (ZOE). Methods: Material samples (n = 10) were placed in polyethylene tubes and immersed in 10 mL of distilled water. After 3, 6,12,24, and 48 hours and 7,14, and 28 days, the water pH was determined with a pH meter, and calcium release was assessed by atomic absorption spectrophotometry. An empty tube was used as the control group. Results: The control group presented a pH value of 6.9 at all studied periods and did not show the presence of calcium ion. S26 presented greater hydroxyl ion release up to 12 hours (p < 0.05). From 24 hours until 28 days, S26, MTA, CPM1, and CPM2 had similar results. in ail periods, ZOE presented the lowest hydroxyl ion release. CPM1, followed by CPM2, released the most calcium ions until 24 hours (p < 0.05). Between 48 hours and 7 days, CPM1 and CPM2 had the highest release. A greater calcium ion release was observed for CPM2, followed by CPM1 at 14 days and for S26, CPM1, and CPM2 at 28 days. ZOE released the least calcium ions in all periods. Conclusion: Sealer 26, MTA, and Endo CPM sealer at normal or thicker consistency release hydroxyl and calcium ions. Endo CPM sealer may be an alternative as root-end filling material. (J Endod 2009;35:1418-1421)
Resumo:
Objective. The purpose of this study was to evaluate the pH and calcium ion release of 6 materials used for root-end filling and perforation repair. Study design. Gray ProRoot MTA, gray MTA-Angelus, white MTA-Angelus, and CPM were compared to 2 experimental ones: MTA-exp, also based in Portland cement with a modified mixing liquid, and MBPc, an epoxy-resin based cement containing calcium hydroxide. After 3, 24, 72, and 168 hours the water in which each sample had been immersed was tested to determine the ph and calcium ion release. Results. All the analyzed materials showed alkaline pH and capacity to release calcium ions; however, a tendency of reduction of these characteristics was noted for all the analyzed materials, except for the MBPc, which showed a slight increase of pH among the 3 initial periods. Conclusion. The results suggest that all materials investigated presented alkaline pH and ability of release of calcium ions. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 135-139)
Resumo:
This study evaluated the influence of addition of 10% calcium chloride (CaCl(2)) on the setting time, solubility, disintegration, and pH of white MTA (WMTA) and white Portland cement (WPC). A test of the setting time was performed following the #57 ADA specifications and a test of the final setting time according to the ASTM. For the solubility tests disintegration and pH, Teflon rings were filled with the cements and weighed after setting. After 24 h in a desiccator, they were once again weighed. Thereafter, they were immersed in MiliQ water for 24 and 72 h and 7, 14, and 28 days, with maintenance in the desiccator and weighing between periods. The pH of water in which the rings were immersed was measured immediately after contact with them and in the other periods. The addition of CaCl(2) provided a significant reduction (50%) in the initial setting time of cements. The final setting time of WMTA was reduced in 35.5% and the final setting time of WPC in 68.5%. The WMTA with CaCl(2) absorbed water and gained weight with time, except for in the 24-h period. The addition of CaCl(2) to the WPC reduced its solubility. The addition of CaCl(2) increased the pH of WMTA in the immediate period and at 24 and 72 h and for WPC in the immediate period and at 24 h. The addition of CaCl(2) to WMTA and WPC reduced the setting times and solubility of both and increased the pH of cements in the initial periods. (J Endod 2009;35:550-554)
Resumo:
Objectives: This in situ study evaluated the effect of an erosive challenge on different restorative materials and on enamel restored with these materials, as well as the ability of these materials to protect the adjacent enamel against erosion. Methods: Ten volunteers wore palatal devices with eight bovine enamel blocks, randomly selected and distributed into two vertical rows, corresponding to the following groups: GI/GV, resin-modified glass ionomer; GII/GVI, conventional glass ionomer; GIII/GVII, composite resin; GIV/GVIII, amalgam. one row (corresponding to groups I-IV) was immersed in a cola drink and the other row (corresponding to groups V-VIII) was subjected to saliva only. The palatal device was continuously worn for 7 days and only half of the appliance (groups I-IV) was immersed in the soft drink (Coca-Cola (R), 150 mL) for 5 min, three times a day. The study variables comprised the wear (profilometry, mu m) and the percentage of surface microhardness change (%SMHC). Data were tested for significant differences by two-way ANOVA and Tukey`s tests (p < 0.05). Results: Considering the restorative materials, for %SMHC and wear, there were no differences among the materials and between the saliva and the erosive challenge. For enamel analyses, the erosive challenge promoted a higher wear and %SMHC of the enamel than did the saliva. There were no significant differences in wear and %SMHC of the enamel adjacent to the different restorative materials. Conclusion: This research data suggest that there is little %SMHC and wear of the studied restorative materials and none of them had a preventive effect against erosion on adjacent enamel, which showed a pronounced wear. (c) 2007 Elsevier Ltd. All rights reserved.
Evaluation of pH and Calcium Ion Release of Calcium Hydroxide Pastes Containing Different Substances
Resumo:
Introduction: The objective of this study was to evaluate the pH and calcium ion release of calcium hydroxide pastes associated with different substances. Methods: Forty acrylic teeth with simulated root canals were divided into 4 groups according to the substance associated to the calcium hydroxide paste: chlorhexidine (CHX) in 2 formulations (1% solution and 2% gel), Casearia sylvestris Sw extract, and propylene glycol (control). The teeth with pastes and sealed coronal accesses were immersed in 10 mL deionized water. After 10 minutes, 24 hours, 48 hours, and 7, 15, and 30 days, the teeth were removed to another container, and the liquid was analyzed. Calcium ion release was measured by atomic absorption spectrophotometry, and pH readings were made with a pH meter. Data were analyzed statistically by analysis of variance and Tukey test (alpha = 0.05). Results: Calcium analysis revealed significant differences (P < .05) for 1% CHX solution and 2% CHX gel at 10 minutes. After 24 hours, 2% CHX gel x Control and 2% CHX gel x 1% CHX solution differed significantly (P < .05). After 48 hours, there were significant differences (P < .05) for 2% CHX gel x Control and Extract x Control. No differences (P > .05) were observed among groups in the other periods. Regarding the pH, there were significant differences (P < .05) for 2% CHX gel x Control and 2% CHX gel x 1% CHX solution after 48 hours and for 2% CHX gel x Control after 15 days. In the other periods, no differences (P > .05) were observed among groups. Conclusions: All pastes behaved similarly in terms of pH and calcium ion release in the studied periods. (J Endod 2009;35:1274-1277)
Resumo:
Like fluoride, lead (Pb) accumulates on the enamel surface pre-eruptively, but it is not yet known whether it also deposits on enamel while dental caries is developing. This study evaluates Pb distribution in bovine enamel slabs submitted to a pH-cycling regimen simulating the caries process. The slabs were subjected to 8 cycles of de- and remineralizing conditions, and Pb (as acetate salt) was added to the de- and remineralized solutions at concentrations of 30 mu g/l (experimental group, E1) and 300 mu g/l (experimental group, E2). The control group (C) consisted of solutions to which Pb was not added. After the pH cycling, 100-mu m sections of the slabs were analyzed by polarizing microscopy, to observe the extent of caries-like lesions, and these sections were used for Pb estimation by Synchrotron radiation X-ray microfluorescence. Caries lesions were observed along all superficial enamel surfaces to an extent of 120 mu m. A Pb concentration gradient was observed in enamel, which decreased toward dentine. The highest Pb signals were observed for group E2, and the differences were statistically significant at enamel depths of 0 (C vs. E2; p = 0.029) and 50 mu m (C vs. E2 and E1 vs. E2; p = 0.029). In conclusion, this study suggests that if Pb is present in the oral environment, it may deposit in enamel during the caries process. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
A method is described whereby sedimentation velocity is combined with equilibrium dialysis to determine the net charge (valence) of a protein by using chromate as an indicator ion for assessing the extent of the Donnan redistribution of small ions. The procedure has been used in experiments on bovine serum albumin under slightly alkaline conditions (pH 8.0, I 0.05) to illustrate its application to a system in which the indicator ion and protein both bear net negative charge and on lysozyme under slightly acidic conditions (pH 5.0, I 0.10) to illustrate the situation where chromate is a counterion. (C) 2001 Elsevier Science.
Resumo:
Aims: The physiological examination of amylase production by Aeromonas hydrophila JMP636 and identification of the mechanism of regulation. Methods and Results: Aeromonas hydrophila JMP636 was grown with single, then dual carbon sources; the growth cycle was followed and amylase activity throughout was monitored. The levels of cAMP, a known secondary messenger for the regulatory gene crp, were also examined. Amylase activity was regulated by catabolite repression. Physiological studies revealed that JMP636 exhibited both diauxic growth, with two carbon sources, and the 'acid toxicity' effect on glucose. The crp gene was cloned, expressed and inactivated from the JMP636 chromosome. Catabolite repression of amylase production and the 'acid toxicity' effect both require crp and were linked to cAMP levels. Conclusions: Regulation of amylase production was predicted to follow the model CRP-mediated cAMP-dependent Escherichia coli catabolite regulation system. Significance and Impact of the Study: This work provides an understanding of the physiology of the opportunistic pathogen Aer. hydrophila through identification of the mechanism of catabolite repression of amylase production and the existence of crp within this cell. It also provides a broader knowledge of global gene regulation and suggests regulatory mechanisms of other Aer. hydrophila gene/s.
Resumo:
Unusually high concentrations of ammonium have been observed in a Vertisol below 1 m depth in southeast Queensland. This study investigated the possibility that an absence of nitrification is allowing this ammonium to accumulate and persist over time, and examined the soil environmental characteristics that may be responsible for limiting nitrifying organisms. The possibility that anaerobiosis, soil acidity, soil salinity, low organic carbon concentrations, and/or an absence of active nitrifying microorganisms were responsible for limiting nitrification was examined in laboratory and field studies. The presence/absence of anaerobic conditions was determined qualitatively using a field test to give an indication of electron lability. In addition, an incubation study was conducted and soil environmental conditions were improved for nitrifying organisms by adjusting the pH from 4.4 to 7, adjusting the electrical conductivity from 1.6 to 0.5 dS/m, amending with a soluble carbon substrate at a rate of 500 mg/kg, and using microorganisms from the surface horizon to inoculate to the subsoil. Over a 180-day period no nitrification was detected in the control samples from the incubation study, indicating that an extremely low rate of nitrification is likely to be responsible for allowing ammonium to accumulate in this soil. Analysis of the effect of soil environmental conditions on nitrification revealed that anaerobic conditions did not exist at depth and that pH, EC, organic carbon, and inoculation treatments added in isolation had no effect on nitrification. However, when inoculum was added to the soil in combination with pH, a significant increase in nitrification was observed, and the greatest amount of nitrification was observed when inoculum, pH, and EC treatments were added in combination. It was concluded that the reason for the low rate of nitrification in this soil is primarily the absence of a significant population of active nitrifying microorganisms, which may have been unable to colonise the subsoil environment due to its acidic, and to a lesser extent, its saline environment.
Resumo:
Adsorption of p-Cresol and p-Nitrophenol by untreated activated carbon in single and multisolute solutions was carried out at 301 K and at controlled pH conditions. In acidic conditions, well below the pK(a) of both solutes, it was observed that the adsorbate solubility and the electron density of aromatic rings influenced the extent of adsorption by affecting the extent of London dispersion forces. The fitted parameters obtained from single-solute Langmuir equation show that Q(max) and the adsorption affinity of carbon for the compound with low pK(a) decrease more significantly. In higher solution pH conditions, on the other hand, it was found that electrostatic forces played a significant role on the extent of adsorption. The presence of another compound decreases Q(max) and the adsorption affinity of carbon for the principal compound. The effect of pH, on the carbon surface and on the solute molecules, must be considered. Adsorption of the solute at higher pH values was found to be dependent on the concentration of anionic form of the solute. The isotherm data were fitted to the Langmuir isotherm equation for both single and double solute solutions.
Resumo:
Thermally stable composite nanostructures of titanium dioxide (anatase) and silicate nanoparticles were prepared from Laponite clay and a sol of titanium hydrate in the presence of poly(ethylene oxide) (PEO) surfactants. Laponite is a synthetic clay that readily disperses in water and exists as exfoliated silicate layers of about 1-nm thick in transparent dispersions of high pH. The acidic sol solution reacts with the clay platelets and leaches out most of the magnesium in the clay, while the sol particles hydrolyze further due to the high pH of the clay dispersion. As a result, larger precursors of TiO2 nanoparticles form and condense on the fragmentized pieces of the leached silicate. Introducing PEO surfactants into the synthesis can significantly increase the porosity and surface area of the composite solids. The TiO2 exists as anatase nanoparticles that are separated by silicate fragments and voids such that they are accessible to organic molecules. The size of the anatase particle can be tailored by manipulating the experimental parameters at various synthesis stages. Therefore, we can design and engineer composite nanostructures to achieve better performance. The composite solids exhibit superior properties as photocatalysts for the degradation of Rhodamine 6G in aqueous solution.
Resumo:
Stomatal conductance (g(s)) of pepper (Capsicum annuum L.) plants decreased during the second photoperiod (day 2) after withholding nitrate (N). Stomatal closure of N-deprived plants was not associated with a decreased shoot water potential (Psi(shoot)); conversely Psi(shoot) was lower in N-supplied plants. N deprivation transiently (days 2 and 3) alkalized (0.2-0.3 pH units) xylem sap exuded from de-topped root systems under root pressure, and xylem sap expressed from excised shoots by pressurization. The ABA concentration of expressed sap increased 3-4-fold when measured on days 2 and 4. On day 2, leaves detached from N-deprived and N-supplied plants showed decreased transpiration rates when fed an alkaline (pH 7) artificial xylem (AX) solution, independent of the ABA concentration (10-100 nM) supplied. Thus changes in xylem sap composition following N deprivation can potentially close stomata. However, the lower transpiration rate of detached N-deprived leaves relative to N-supplied leaves shows that factors residing within N-deprived leaves also mediate stomatal closure, and that these factors assume greater importance as the duration of N deprivation increases.