936 resultados para Acari Ixodidae
Resumo:
Two new Tetranychidae (Prostigmata) mites are described from Brazil Monoceronychus tchecensis n. sp., a bryobiine collected from weeping fingergrass, Eustachys distichophylla (Lag.) Nees (Poaceae), in the State of Rio Grande do Sul; and Oligonychus fileno n. sp., a tetranychine collected from grape, Vitis vinifera L. (Vitaceae), in the State of Minas Gerais. Monoceronychus tchecensis n. sp. is the second species in this genus described from South America. In addition to the description of these new species, the tetranychine Eotetranychus smithi Pritchard and Baker, 1955 was recorded for the first time for South America.
Resumo:
Aceria inusitata Britto and Navia n. sp. (Acari: Eriophyidae) is described from protogynes, deutogynes and two forms of males occurring under a ""patches of webbing"" from ""pau-brasil,"" Caesalpinia echinata L. (Caesalpiniaceae), leaves. This is the first example of a deuterogynous eriophyid mite in tropical regions with two forms of males, one resembling the protogyne and the other the deutogyne. In addition, biological observations are presented. Aberoptus cerostructor Flechtmann, is given a new generic assignment, Aceria cerostructor n. comb.
Resumo:
Carios mimon is an argasid tick common on Chiroptera, originally described from larvae collected on bats Mimon crenulatum from Bolivia and Eptesicus brasiliensis from Uruguay. Later it was also registered from Argentina and recently included among the Brazilian tick fauna. In Brazil, this species is very aggressive to man, resulting in intense inflammatory response and pain. It is known only by the larval description and its morphology resembles that from other species currently included into the genus Carios, formerly classified into the subgenus Alectorobius, genus Ornithodoros. Here we describe adults and redescribe the larva of C. mimon, based on light and scanning electron microscopy. Remarks about its morphological similarity with other species of this genus are also discussed. Molecular analysis inferred from a portion of the 16S rRNA mitochondrial gene placed C. mimon in a cluster supported by maximal bootstrap value (100%) with other argasid species (mostly bat parasites in the New World), which have been classified into either the genus Ornithodoros or Carios, depending on the Argasidae classification adopted by different authors.
Resumo:
From September 2008 to March 2010, 397 ticks (315 larvae, 33 nymphs, 23 females, and 26 males) were collected from captive and free-living wildlife species in northeastern Brazil. Six tick species were identified, including Amblyomma auricularium (Conil) on Tamandua tetradactyla (L.),Amblyomma dubitalum Neumann on Hydrochaeris hydrochaeris (L.), Nectomys rattus (Pelzen) and T. tetradactyla, Amblyomma parvim A ragao on T. tatradactyla, Amblyomma rotundatum Koch on Boa constrictor L., Chelonoidis carbonaria (Spix), Kinosternon scorpioides (L.) and Rhinella jimi (Stevaux), Amblyomma cerium Koch on Bradypus variegatus Schinz, and Rhipicephalus sanguineus (Latreille) on Lycalopex vetulus (Lund). Nectomys rattus and T. tetradactyla are new hosts for A. dubitatum This study extends the known distribution of A. dubitatum in South America and provides evidence that its geographical range has been underestimated because of the lack of research. Four (A. dubitatum, A. parvum, A. rotundatum, and R. sanguineus) of six tick species identified in this study have previously been found on humans in South America, some of them being potentially involved in the transmission of pathogens of zoonotic concern.
Resumo:
Males, females, and larvae of Carios fonsecai sp. nov. are described from free-living ticks collected in a cave at Bonito, state of Mato Grosso do Sul, Brazil. The presence of cheeks and legs with micromammillate cuticle makes adults of C. fonsecai morphologically related to a group of argasid species (mostly bat-associated) formerly classified into the subgenus Alectorobius, genus Ornithodoros. Examination of larvae indicates that C. fonsecai is clearly distinct from most of the previously described Carios species formerly classified into the subgenus Alectorobius, based primarily on its larger body size, dorsal setae number, dorsal plate shape, and hypostomal morphology. On the other hand, the larva of C. fonsecai is most similar to Carios peropteryx, and Carios peruvianus, from which differences in dorsal plate length and width, tarsal setae, and hypostome characteristics are useful for morphological differentiation. The mitochondrial 16S rDNA sequence of C. fonsecai showed to be closest (85-88% identity) to several corresponding sequences of different Carios species available in GenBank. Bats identified as Peropteryx macrotis and Desmodus rotundus were found infested by C. fonsecai larvae in the same cave where the type series was collected. C. fonsecai showed to be aggressive to humans in the laboratory.
Resumo:
Phlebotomine sand flies are the only proven biological vectors of Leishmania parasites. However, Rhipicephalus sanguineus ticks have long been suspected to transmit Leishmania infantum in studies carried out in laboratory and natural conditions. In the present study, 5 mu l of L. infantum promastigotes (1 x 10(6) cells per ml) was injected into the hemocel through the coxa 1 of four engorged females (F1, F2, F3 and F4). Control ticks (F5 and F6) were injected with sterile phosphate-buffered saline (PBS) using the same procedure. Then, these females, their eggs, and the originated larvae were tested by real time polymerase chain reaction (real-time PCR) for the presence of L. infantum kinetoplast DNA (kDNA). Females and eggs were tested after the end of the oviposition period (about 5 weeks post-inoculation) whereas larvae were tested about 4 months after the inoculation of females. All artificially infected females were positive for L. infantum kDNA. In addition, two pools of eggs (one from F2 and other from F4) and four pools of larvae (one from each F1 and F4 and two from F2) were positive for L infantum kDNA. These results showed, for the first time, the transovarial passage of L. infantum kDNA in R. sanguineus ticks, thus suggesting that the transovarial transmission of L. infantum protozoa in ticks is worth to be investigated. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We studied the internal transcribed spacer 2 (ITS2) in twenty-two spp. of ticks from the subfamily Rhipicephalinae. A 104-109 base pair (bp) region was Imperfectly repeated In most ticks studied. Mapping the number of repeat copies on to a phylogeny from the ITS2 showed that there have been many Independent gains and losses of repeats. Comparison of the sequences of the repeat copies Indicated that in most taxa concerted evolution had played little if any role in the evolution of these regions, as the copies clustered by sequence position rather than species, In our putative secondary structure, each repeat copy can fold into a distinct and almost identical stem-loop complex; a gain or loss of a repeat copy apparently does not impair the function of the ITS2 in these ticks.
Resumo:
We inferred the phylogeny of 33 species of ticks from the subfamilies Rhipicephalinae and Hyalomminae from analyses of nuclear and mitochondrial DNA and morphology. We used nucleotide sequences from 12S rRNA, cytochrome c oxidase I, internal transcribed spacer 2 of the nuclear rRNA, and 18S rRNA. Nucleotide sequences and morphology were analyzed separately and together in a total-evidence analysis. Analyses of the five partitions together (3303 characters) gave the best-resolved and the best-supported hypothesis so far for the phylogeny of ticks in the Rhipicephalinae and Hyalomminae, despite the fact that some partitions did not have data for some taxa. However, most of the hidden conflict (lower support in the total-evidence analyses compared to that in the individual analyses) was found in those partitions that had taxa without data. The partitions with complete taxonomic sampling had more hidden support (higher support in the total-evidence analyses compared to that in the separate-partition analyses) than hidden conflict. Mapping of geographic origins of ticks onto our phylogeny indicates an African origin for the Rhipicephalinae sensu lato (i.e., including Hyalomma spp.), the Rhipicephalus-Boophilus lineage, the Dermacentor-Anocentor lineage, and the Rhipicephalus-Booophilus-Nosomma-Hyalomma-Rhipicentor lineage. The Nosomma-Hyalomma lineage appears to have evolved in Asia. Our total-evidence phylogeny indicates that (i) the genus Rhipicephalus is paraphyletic with respect to the genus Boophilus, (ii) the genus Dermacentor is paraphyletic with respect to the genus Anocentor, and (iii) some subgenera of the genera Hyalomma and Rhipicephalus are paraphyletic with respect to other subgenera in these genera. Study of the Rhipicephalinae and Hyalomminae over the last 7 years has shown that analyses of individual datasets (e.g., one gene or morphology) seldom resolve many phylogenetic relationships, but analyses of more than one dataset can generate well-resolved phylogenies for these ticks. (C) 2001 Academic Press.
Resumo:
Endeostigmata are early derivative acariform mites, fossils of which are known from the Devonian. Extant species bear numerous plesiomorphies, the most striking being remnant opisthosomal segmentation. Also, many are all-female parthenogens with broad geographical distributions. Many of the species reported in the present study may represent clones of ancient Gondwana species. Before the present study only a handful of endeostigmatans had been reported from Australia. A key to the families of Endeostigmata is provided in the present paper, along with a review of the Australian fauna of the families Alicorhagiidae (new record), Grandjeanicidae (new record), Oehserchestidae (new record), and Terpnacaridae. Terpnacarus gibbosus (Womersley) is redescribed. A report of the first records of the cosmopolitan parthenogens Alicorhagia usitata Theron et al., Alycosmesis palmata (Oudemans), Stigmalychus veretrum Theron et al., Terpnacarus carolinaensis Theron, and Oehserchestes arboriger (Theron) in Australia is provided, along with a description of the new species Grandjeanicus theroni (Grandjeanicidae). Terpnacarus variolus Shiba and T. glebulentus Theron are junior synonyms of T. gibbosus.
Resumo:
The Australian Neoseiulus Hughes and Typhlodromips de Leon (Acari: Phytoseiidae: Amblyseiinae) are revised and diagnosed, and three new related genera, Knopkirie, gen. nov., Olpiseius, gen. nov. and Pholaseius, gen. nov. are proposed and diagnosed. In Australia, Neoseiulus contains at least 44 species, 18 of which are newly described here, in six species-groups: the barkeri-group, womersleyi-group, cucumeris-group, cangaro-group, paloratus-group, and the paspalivorus-group. Typhlodromips contains six species, two previously described and four new species. Knopkirie contains four species, three of which are newly described here, in two species-groups: the petri-group and the banksiae-group. Olpiseius contains three species, one of which is newly described, all placed in the noncollyerae-group, and Pholaseius is monotypic, with one newly described species. Diagnoses and keys are provided for all Australian species in each of the above genera, as are keys to the amblyseiine genera currently recognised in Australia.
Resumo:
Ixodes holocyclus has a narrow, discontinuous distribution along the east coast of Australia. We studied ticks from 17 localities throughout the geographic range of this tick. The ITS2 of I. holocyclus is 793 bp long. We found nucleotide variation at eight of the 588 nucleotide positions (1.4%) that were compared for all ticks. There were eight different nucleotide sequences. Most sequences were not restricted to a particular geographic region. However, sequences F, G and H, which had an adenine at position 197, were found only in the far north of Queensland - all other ticks had a guanine at this position. The low level of intraspecific variation in this tick (0.7%) contrasts with the sequence divergence between L holocyclus and its close relative, I. cornuatus (13.1 %). These data indicate that L holocyclus does not contain cryptic species despite possible geographic isolation of some populations. We conclude that variation in the ITS2 is likely to be informative about the phylogeny of the group.
Resumo:
Social bees have a diverse fauna of symbiotic mesostigmatic mites, including highly pathogenic parasites of the honeybee, but there are few reports of Mesostigmata phoretic on or inhabiting the nests of solitary or communal, ground-nesting bees. In south-eastern Australia, however, native bees in the family Halictidae carry what appears to be a substantial radiation of host-specific mesostigmatans in the family Laelapidae. Herein, we redescribe the obscure genus Raymentia , associated with Lasioglossum (Parasphecodes ) spp. bees (Halictidae) and describe two new species, R. eickwortiana from L. lacthium (Smith) and R. walkeriana from L. atronitens (Cockerell). The type species, R. anomala Womersley, is associated with L. altichum (Smith). In addition, we review the mites known to be associated with Australian bees, provide a key to differentiate them, and describe and illustrate acarinaria of the Halictinae. We also report on the first occurrences in Australia of the genera Trochometridium Cross (Heterostigmata: Trochometridiidae), from L. eremaean Walker (Halictidae), and Cheletophyes Oudemans (Prostigmata: Cheyletidae) from Xylocopa Latreille (Xylocopinae), and on the previously unknown association between a Neocypholaelaps Vitzthum (Mesostigmata: Ameroseiidae) and Lipotriches tomentifera (Friese) (Halictidae).
Resumo:
We sequenced part of the mitochondrial 12S ribosomal RNA gene of 23 specimens of Sarcoptes scabiei from eight wombats, one dog and three humans. Twelve of the 326 nucleotide positions varied among these mites and there were nine haplotypes (sequences) that differed by 1-8 nucleotides. Phylogenetic analyses indicated that these mites were from two lineages: (1) mites from wombats from Victoria, Australia, and mites from the humans and dog from the Northern Territory, Australia (haplotypes 1-4, 9); and (2) mites from the humans and dog from the Northern Territory (haplotypes 5-8). Mites from the three different hosts (wombats, a dog and humans) had not diverged phylogenetically; rather, these mites had similar 12S sequences. Thus, we conclude that these mites from wombats, humans and a dog are closely related, and that they diverged from a common ancestor relatively recently. This conclusion is consistent with the argument that people and/or their dogs introduced to Australia the S. scabiei mites that infect wombats Australia. So, S. scabiei, which has been blamed for the extinction of populations of wombats in Australia, may be a parasitic mite that was introduced to Australia with people and/or their dogs. These data show that the mitochondrial 12S rRNA gene may be a suitable population marker of S. scabiei from wombats, dogs and humans in Australia.
Resumo:
ITS2 sequences are used extensively in molecular taxonomy and population genetics of arthropods and other animals yet little is known about the molecular evolution of ITS2. We studied the secondary structure of ITS2 in species from each of the six main lineages of hard ticks (family Ixodidae). The ITS2 of these ticks varied in length from 679 bp in Ixodes scapularis to 1547 bp in Aponomma concolor. Nucleotide content varied also: the ITS2 of ticks from the Prostriata lineage (Ixodes spp.) had 46-49% GC whereas ITS2 sequences of ticks from the Metastriata lineage (all other hard ticks) had 61-62% GC. Despite variation in nucleotide sequence, the secondary structure of the ITS2 of all of these ticks apparently has five domains. Stems 1, 3, 4 and 5 of this secondary structure were obvious in all of the species studied. However, stem 2 was not always obvious despite the fact that it is flanked by highly conserved sequence motifs in the adjacent stems, stems 1 and 3. The ITS2 of hard ticks has apparently evolved mostly by increases and decreases in length of the nucleotide sequences, which caused increases, and decreases in the length of stems of the secondary structure. This is most obvious when stems of the secondary structures of the Prostriata (Ixodes spp.) are compared to those of the Metastriata (all other hard ticks). Increases in the size of the ITS2 may have been caused by replication slippage which generated large repeats, like those seen in Haemaphysalis humerosa and species from the Rhipicepalinae lineage, and the small repeats found in species from the other lineages of ticks.
Resumo:
The ability of introduced organisms to invade undisturbed native habitats is a major concern in conservation biology and has resulted in a re-evaluation of the introduction of exotic biocontrol agents, especially of generalist predators. One such agent is Stratiolaelaps miles (Berlese), a predatory mite described from Italy, known from throughout the Holarctic, and apparently accidentally introduced to other areas of the world, including Australia. Initial investigations revealed that putative S. miles could be found in both disturbed and relatively pristine habitats in Queensland, Australia. However, analysis of the mitochondrial DNA of five populations showed most to be highly divergent genetically. Subsequent morphological analysis established two species groups: the lamington-group from cool-temperate to subtropical rainforests in Eastern Australia and the more eurytopic miles-group with a cosmopolitan distribution. We describe two new species from each of these complexes (Stratiolaelaps womersleyi, Stratiolaelaps lamington; Stratiolaelaps marilyn, Stratiolaelaps lorna, respectively), and resurrect Stratiolaelaps scimitus (Womersley), a species which often appears to have been confused with S. miles. Additionally, the large genetic distances among morphologically homogenous species in the miles-group suggest that the apparently cosmopolitan S. miles may be composed of a suite of cryptic species of potentially varying utility in biological control. (C) 2002 Elsevier Science (USA). All rights reserved.