878 resultados para Abrasive Wear and Tear


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of brushing with a Colgate 360° or Oral B Indicator 35 toothbrush on the shear bond strength of orthodontic brackets bonded to extracted human teeth. The bristle wear and bristle tip morphology were also examined after simulated tooth-brushing. Orthodontic brackets (Roth-P/1 st and 2 nd pre-molar S/D- Slot 0.18) were bonded (Transbond XT ®) to the smoothest surface of each of 45 extracted human molar and premolar teeth. Test specimens were randomly divided into three groups: Group 1, control group with no brushing; Group 2, brushing with the Oral B Indicator 35; Group 3, brushing with the Colgate 360°. Samples were adapted to a machine that simulated tooth-brushing. The bond strength of each bracket to each tooth was assessed with a mechanical testing machine. The bristle wear and bristle tip morphology indices were also assessed. Statistically significant differences were defined for p ≤ 0.05. The average bond strengths (range: 90.18-90.89 kgf/cm 2) did not differ among the three groups. The Colgate 360° showed less bristle wear and a better bristle tip morphology than the Oral B Indicator 35 toothbrush. However, use of either toothbrush did not decrease the bond strength of the orthodontic brackets. Therefore, patients undergoing orthodontic therapy can safely use either toothbrush.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metal machining is the complex process due the used cutting parameters. In metal cutting process, materials of workpiece differ widely in their ability to deform plastically, to fracture and to sustain tensile stresses. Moreover, the material involved in the process has a great influence in these operations. The Ti-6Al-4V alloy is very used in the aeronautical industry, mainly in the manufacture of engines, has very important properties such the mechanical and corrosion resistance in high te mperatures. The turning of the Ti-Al-4V alloy is very difficult due the rapid tool wear. Such behavior result of the its low thermal conductivity in addition the high reactivity with the cutting tool. The formed chip is segmented and regions of the large deformation named shear bands plows formed. The machinability of the cutting process can be evaluated by several measures including power consume, machined surface quality, tool wear, tool life, microstructure and morphology of the obtained chip. This paper studies the effect of cutting parameters, speed and feed rates, in the tool wear and chip properties using uncoating cemented carbide tool. Microe-structural characterization of the chip and tool wear was performed using scanning electron microscopy (SEM) and Light Optical Mcroscopy (LOM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)