951 resultados para Ab-initio calculations
Resumo:
Mode of access: Internet.
Resumo:
Gel.
Resumo:
CCBE S. XVI,
Resumo:
Mode of access: Internet.
Resumo:
No. 154 of 500 copies.
Resumo:
Mode of access: Internet.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The ab initio/Rice-Ramsperger-Kassel-Marcus (RRKM) approach has been applied to investigate the photodissociation mechanism of benzene at various wavelengths upon absorption of one or two UV photons followed by internal conversion into the ground electronic state. Reaction pathways leading to various decomposition products have been mapped out at the G2M level and then the RRKM and microcanonical variational transition state theories have been applied to compute rate constants for individual reaction steps. Relative product yields (branching ratios) for C6H5+H, C6H4+H-2, C4H4+C2H2, C4H2+C2H4, C3H3+C3H3, C5H3+CH3, and C4H3+C2H3 have been calculated subsequently using both numerical integration of kinetic master equations and the steady-state approach. The results show that upon absorption of a 248 nm photon dissociation is too slow to be observable in molecular beam experiments. In photodissociation at 193 nm, the dominant dissociation channel is H atom elimination (99.6%) and the minor reaction channel is H-2 elimination, with the branching ratio of only 0.4%. The calculated lifetime of benzene at 193 nm is about 11 mus, in excellent agreement with the experimental value of 10 mus. At 157 nm, the H loss remains the dominant channel but its branching ratio decreases to 97.5%, while that for H-2 elimination increases to 2.1%. The other channels leading to C3H3+C3H3, C5H3+CH3, C4H4+C2H2, and C4H3+C2H3 play insignificant role but might be observed. For photodissociation upon absorption of two UV photons occurring through the neutral hot benzene mechanism excluding dissociative ionization, we predict that the C6H5+H channel should be less dominant, while the contribution of C6H4+H-2 and the C3H3+C3H3, CH3+C5H3, and C4H3+C2H3 radical channels should significantly increase. (C) 2004 American Institute of Physics.
Resumo:
The diagrammatic strong-coupling perturbation theory (SCPT) for correlated electron systems is developed for intersite Coulomb interaction and for a nonorthogonal basis set. The construction is based on iterations of exact closed equations for many - electron Green functions (GFs) for Hubbard operators in terms of functional derivatives with respect to external sources. The graphs, which do not contain the contributions from the fluctuations of the local population numbers of the ion states, play a special role: a one-to-one correspondence is found between the subset of such graphs for the many - electron GFs and the complete set of Feynman graphs of weak-coupling perturbation theory (WCPT) for single-electron GFs. This fact is used for formulation of the approximation of renormalized Fermions (ARF) in which the many-electron quasi-particles behave analogously to normal Fermions. Then, by analyzing: (a) Sham's equation, which connects the self-energy and the exchange- correlation potential in density functional theory (DFT); and (b) the Galitskii and Migdal expressions for the total energy, written within WCPT and within ARF SCPT, a way we suggest a method to improve the description of the systems with correlated electrons within the local density approximation (LDA) to DFT. The formulation, in terms of renormalized Fermions LIDA (RF LDA), is obtained by introducing the spectral weights of the many electron GFs into the definitions of the charge density, the overlap matrices, effective mixing and hopping matrix elements, into existing electronic structure codes, whereas the weights themselves have to be found from an additional set of equations. Compared with LDA+U and self-interaction correction (SIC) methods, RF LDA has the advantage of taking into account the transfer of spectral weights, and, when formulated in terms of GFs, also allows for consideration of excitations and nonzero temperature. Going beyond the ARF SCPT, as well as RF LIDA, and taking into account the fluctuations of ion population numbers would require writing completely new codes for ab initio calculations. The application of RF LDA for ab initio band structure calculations for rare earth metals is presented in part 11 of this study (this issue). (c) 2005 Wiley Periodicals, Inc.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.