399 resultados para ATR
Resumo:
This paper reports on the advancement of magnetic ionic liquids (MILs) as stable dispersions of surface-modified gamma-Fe2O3, Fe3O4, and CoFe2O4 magnetic nanoparticles (MNPs) in a hydrophobic ionic liquid, 1-n-butyl 3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2). The MNPs were obtained via coprecipitation and were characterized using powder X-ray diffraction, transmission electron microscopy, Raman spectroscopy and Fourier transform near-infrared (FT-NIR) spectroscopy, and magnetic measurements. The surface-modified MNPs (SM-MNPs) were obtained via the silanization of the MNPs with the aid of 1-butyl-3[3-(trimethoxysilyl)propyl]imidazolium chloride (BMSPI.Cl). The SM-MNPs were characterized by Raman spectroscopy and Fourier trail: form infrared attenuated total reflectance (FTIR-ATR) spectroscopy and by magnetic measurements. The FTIR-ATR spectra of the SM-MNPs exhibited characteristic absorptions of the imidazolium and those of the Fe-O-Si-C moieties, confirming the presence of BMSPI.Cl on the MNP surface. Thermogravimetric analysis (TGA) showed that the SM-MNPs were modified by at least one BMSPI.Cl monolayer. The MILs were characterized using Raman spectroscopy, differential scanning calorimetry (DSC), and magnetic measurements. The Raman and DSC results indicated an interaction between the SM-MNPs and the IL. This interaction promotes the formation of a supramolecular structure close to the MNP surface that mimics the IL structure and is responsible for the stability of the MIL. Magnetic measurements of the MILs indicated no hysteresis. Superparamagnetic behavior and a saturation magnetization of similar to 22 emu/g could be inferred from the magnetic measurements of a sample containing 50% w/w gamma-Fe2O3 SM-MNP/BMI-NTf2.
Resumo:
This study aimed to evaluate the chemical interaction of collagen with some substances usually applied in dental treatments to increase the durability of adhesive restorations to dentin. Initially, the similarity between human dentin collagen and type I collagen obtained from commercial bovine membranes of Achilles deep tendon was compared by the Attenuated Total Reflectance technique of Fourier Transform Infrared (ATR-FTIR) spectroscopy. Finally, the effects of application of 35% phosphoric acid, 0.1M ethylenediaminetetraacetic acid (EDTA), 2% chlorhexidine, and 6.5% proanthocyanidin solution on microstructure of collagen and in the integrity of its triple helix were also evaluated by ATR-FTIR. It was observed that the commercial type I collagen can be used as an efficient substitute for demineralized human dentin in studies that use spectroscopy analysis. The 35% phosphoric acid significantly altered the organic content of amides, proline and hydroxyproline of type I collagen. The surface treatment with 0.1M EDTA, 2% chlorhexidine, or 6.5% proanthocyanidin did not promote deleterious structural changes to the collagen triple helix. The application of 6.5% proanthocyanidin on collagen promoted hydrogen bond formation. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.
Resumo:
This paper describes the adsorption of sodium dodecyl sulfate (SDS) molecules in a low polar solvent on Ge substrate by using Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectroscopy and atomic force microscopy (AFM). The maximum SDS amount adsorbed is (5.0 +/- 0.3) x 10(14) molecules cm(-2) in CHCl3, while with the use of CCl4 as subphase the ability of SDS adsorbed is 48% lower. AFM images show that depositions are highly disordered over the interface, and it was possible to establish that the size of the SDS deposition is around 30-40 nm over the Ge surface. A complete description of the infrared spectroscopic bands for the head and tail groups in the SDS molecule is also provided.
Resumo:
Research in art conservation has been developed from the early 1950s, giving a significant contribution to the conservation-restoration of cultural heritage artefacts. In fact, only through a profound knowledge about the nature and conditions of constituent materials, suitable decisions on the conservation and restoration measures can thus be adopted and preservation practices enhanced. The study of ancient artworks is particularly challenging as they can be considered as heterogeneous and multilayered systems where numerous interactions between the different components as well as degradation and ageing phenomena take place. However, difficulties to physically separate the different layers due to their thickness (1-200 µm) can result in the inaccurate attribution of the identified compounds to a specific layer. Therefore, details can only be analysed when the sample preparation method leaves the layer structure intact, as for example the preparation of embedding cross sections in synthetic resins. Hence, spatially resolved analytical techniques are required not only to exactly characterize the nature of the compounds but also to obtain precise chemical and physical information about ongoing changes. This thesis focuses on the application of FTIR microspectroscopic techniques for cultural heritage materials. The first section is aimed at introducing the use of FTIR microscopy in conservation science with a particular attention to the sampling criteria and sample preparation methods. The second section is aimed at evaluating and validating the use of different FTIR microscopic analytical methods applied to the study of different art conservation issues which may be encountered dealing with cultural heritage artefacts: the characterisation of the artistic execution technique (chapter II-1), the studies on degradation phenomena (chapter II-2) and finally the evaluation of protective treatments (chapter II-3). The third and last section is divided into three chapters which underline recent developments in FTIR spectroscopy for the characterisation of paint cross sections and in particular thin organic layers: a newly developed preparation method with embedding systems in infrared transparent salts (chapter III-1), the new opportunities offered by macro-ATR imaging spectroscopy (chapter III-2) and the possibilities achieved with the different FTIR microspectroscopic techniques nowadays available (chapter III-3). In chapter II-1, FTIR microspectroscopy as molecular analysis, is presented in an integrated approach with other analytical techniques. The proposed sequence is optimized in function of the limited quantity of sample available and this methodology permits to identify the painting materials and characterise the adopted execution technique and state of conservation. Chapter II-2 describes the characterisation of the degradation products with FTIR microscopy since the investigation on the ageing processes encountered in old artefacts represents one of the most important issues in conservation research. Metal carboxylates resulting from the interaction between pigments and binding media are characterized using synthesised metal palmitates and their production is detected on copper-, zinc-, manganese- and lead- (associated with lead carbonate) based pigments dispersed either in oil or egg tempera. Moreover, significant effects seem to be obtained with iron and cobalt (acceleration of the triglycerides hydrolysis). For the first time on sienna and umber paints, manganese carboxylates are also observed. Finally in chapter II-3, FTIR microscopy is combined with further elemental analyses to characterise and estimate the performances and stability of newly developed treatments, which should better fit conservation-restoration problems. In the second part, in chapter III-1, an innovative embedding system in potassium bromide is reported focusing on the characterisation and localisation of organic substances in cross sections. Not only the identification but also the distribution of proteinaceous, lipidic or resinaceous materials, are evidenced directly on different paint cross sections, especially in thin layers of the order of 10 µm. Chapter III-2 describes the use of a conventional diamond ATR accessory coupled with a focal plane array to obtain chemical images of multi-layered paint cross sections. A rapid and simple identification of the different compounds is achieved without the use of any infrared microscope objectives. Finally, the latest FTIR techniques available are highlighted in chapter III-3 in a comparative study for the characterisation of paint cross sections. Results in terms of spatial resolution, data quality and chemical information obtained are presented and in particular, a new FTIR microscope equipped with a linear array detector, which permits reducing the spatial resolution limit to approximately 5 µm, provides very promising results and may represent a good alternative to either mapping or imaging systems.
Resumo:
The study of mass transport in polymeric membranes has grown in importance due to its potential application in many processes such as separation of gases and vapors, packaging, controlled drug release. The diffusion of a low molecular weight species in a polymer is often accompanied by other phenomena like swelling, reactions, stresses, that have not been investigated in all their aspects yet. Furthermore, novel materials have been developed that include inorganic fillers, reactive functional groups or ions, that make the scenery even more complicated. The present work focused on the experimental study of systems where the diffusion is accompanied by other processes; suitable models were also developed to describe the particular circumstances in order to understand the underlying concepts and be able to design the performances of the material. The effect of solvent-induced deformation in polymeric films during sorption processes was studied since the dilation, especially in constrained membranes, can cause the development of stresses and therefore early failures of the material. The bending beam technique was used to test the effects of the dilation and the stress induced in the polymer by penetrant diffusion. A model based on the laminate theory was developed that accounts for the swelling and is able to predict the stress that raise in the material. The addition of inorganic fillers affects the transport properties of polymeric films. Mixed matrix membranes based on fluorinated, high free volume matrices show attractive performances for separation purposes but there is a need for deeper investigation of the selectivity properties towards gases and vapors. A new procedure based on the NELF model was tested on the experimental data; it allows to predict solubility of every penetrant on the basis of data for one vapor. The method has proved to be useful also for the determination of the diffusion coefficient and for an estimation of the permeability in the composite materials. Oxygen scavenging systems can overcome lack of barrier properties in common polymers that forbids their application in sensitive applications as food packaging. The final goal of obtaining a membrane almost impermeable to oxygen leads to experimental times out of reach. Hence, a simple model was developed in order to describe the transport of oxygen in a membrane with also reactive groups and analyze the experimental data collected on SBS copolymers that show attractive scavenging capacity. Furthermore, a model for predicting the oxygen barrier behavior of a film formed as a blend of OSP in a common packaging material was built, considering particles capable of reactions with oxygen embedded in a non-reactive matrix. Perfluorosulphonic acid ionomers (PFSI) are capturing attention due to a high thermal and chemical resistance coupled with very peculiar transport properties, that make them appropriate to be used in fuel cells. The possible effect of different formation procedure was studied together with the swelling due to water sorption since both water uptake and dilation can dramatically affect the fuel cells performances. The water diffusion and sorption was studied with a FTIR-ATR spectrometer that can give deeper information on the bonds between water molecules and the sulphonic hydrophilic groups and, therefore, on the microstructure of the hydrated ionomer.
Resumo:
The interactions between outdoor bronzes and the environment, which lead to bronze corrosion, require a better understanding in order to design effective conservation strategies in the Cultural Heritage field. In the present work, investigations on real patinas of the outdoor monument to Vittorio Bottego (Parma, Italy) and laboratory studies on accelerated corrosion testing of inhibited (by silane-based films, with and without ceria nanoparticles) and non-inhibited quaternary bronzes are reported and discussed. In particular, a wet&dry ageing method was used both for testing the efficiency of the inhibitor and for patinating bronze coupons before applying the inhibitor. A wide range of spectroscopic techniques has been used, for characterizing the core metal (SEM+EDS, XRF, AAS), the corroded surfaces (SEM+EDS, portable XRF, micro-Raman, ATR-IR, Py-GC-MS) and the ageing solutions (AAS). The main conclusions were: 1. The investigations on the Bottego monument confirmed the differentiation of the corrosion products as a function of the exposure geometry, already observed in previous works, further highlighting the need to take into account the different surface features when selecting conservation procedures such as the application of inhibitors (i.e. the relative Sn enrichment in unsheltered areas requires inhibitors which effectively interact not only with Cu but also with Sn). 2. The ageing (pre-patination) cycle on coupons was able to reproduce the relative Sn enrichment that actually happens in real patinated surfaces, making the bronze specimens representative of the real support for bronze inhibitors. 3. The non-toxic silane-based inhibitors display a good protective efficiency towards pre-patinated surfaces, differently from other widely used inhibitors such as benzotriazole (BTA) and its derivatives. 4. The 3-mercapto-propyl-trimethoxy-silane (PropS-SH) additivated with CeO2 nanoparticles generally offered a better corrosion protection than PropS-SH.
Resumo:
The scope of my research project is to produce and characterize new crystalline forms of organic compounds, focusing the attention on co-crystals and then transferring these notions on APIs to produce co-crystals of potential interest in the pharmaceutical field. In the first part of this work co-crystallization experiments were performed using as building blocks the family of aliphatic dicarboxylic acids HOOC-(CH2)n-COOH, with n= 2-8. This class of compounds has always been an object of study because it is characterized by an interesting phenomenon of alternation of melting points: the acids with an even number of carbon atoms show a melting point higher than those with an odd one. The acids were co-crystallized with four dipyridyl molecules (formed by two pyridine rings with a different number of bridging carbon atoms) through the formation of intermolecular interactions N•••(H)O. The bases used were: 4,4’-bipyridine (BPY), 1,2-bis(4-pyridyl)ethane (BPA), 1,2-(di-4-pyridyl)ethylene (BPE) and 1,2-bis(4-pyridyl)propane (BPP). The co-crystals obtained by solution synthesis were characterized by different solid-state techniques to determine the structure and to see how the melting points in co-crystals change. In the second part of this study we tried to obtain new crystal forms of compounds of pharmaceutical interest. The APIs studied are: O-desmethylvenlafaxine, Lidocaine, Nalidixic Acid and Sulfadiazine. Each API was subjected to Polymorph Screening and Salt/Co-crystal Screening experiments to identify new crystal forms characterized by different properties. In a typical Salt/Co-crystal Screening the sample was made to react with a co-former (solid or liquid) through different methods: crystallization by solution, grinding, kneading and solid-gas reactions. The new crystal forms obtained were characterized by different solid state techniques (X-ray single crystal diffraction, X-ray powder diffraction, Differential Scanning Calorimetry, Thermogravimetric Analysis, Evolved gas analysis, FT-IR – ATR, Solid State N.M.R).
Resumo:
La scarsità di informazioni sulle reazioni che intervengono nel processo di stiratura semipermanente dei capelli e la necessità di trovare prodotti alternativi all’uso della formaldeide ha portato a intraprendere questo lavoro di tesi. Esso si è svolto seguendo due linee principali: l’indagine sui possibili meccanismi di reazione che intervengono fra composti aventi gruppi aldeidici, quali formaldeide o acido gliossilico (particolarmente efficaci nel processo di stiratura), e alcuni amminoacidi presenti nei capelli da un lato, e uno studio sulle modificazioni che intervengono nella fibra attraverso spettroscopia Raman e ATR-FT-IR e microscopia elettronica a scansione (SEM) dall’altro. Partendo dall’ipotesi più plausibile di una addizione sull’atomo di carbonio carbonilico da parte di nucleofili presenti su alcuni residui amminoacidici della catena polipeptidica, sono stati presi in considerazioni tre gruppi funzionali presenti sugli amminoacidi che possono dar luogo ad addizione reversibile al carbonio carbonilico: il gruppo tiolico che comportandosi come nucleofilo allo zolfo potrebbe dare formazione di semitioacetali, il gruppo ossidrilico di amminoacidi come serina e treonina che potrebbe dare semiacetali, ed il gruppo amminico di amminoacidi basici che agendo da nucleofilo all’azoto potrebbe generare immine. Dopo aver indagato sulla reazione fra aldeide formica (o acido gliossilico) con cisteina e derivati, l’indagine è proseguita utilizzando come amminoacido basico modello N-acetil-L-lisina, dove il gruppo amminico in posizione alfa al carbossile è protetto per cercare di mimare la situazione nel polipeptide. Alcune prove sono state condotte facendo reagire questo substrato sia con una serie di aldeidi aromatiche in diverse condizioni sperimentali che con acido gliossilico. In seguito sono state svolte analisi mediante spettroscopia Raman e ATR-FT-IR su ciocche di pelo di yak nelle diverse fasi del trattamento più comunemente utilizzato nella stiratura semipermanente. Questo ha permesso di ottenere indicazioni sia sulle modificazioni della struttura secondaria subite dalla fibra che sul verificarsi di reazioni fra agente lisciante e residui amminoacidici presenti su di essa. Infine è stata svolta un’indagine SEM sia su fibre di yak che su capelli umani ricci per osservare le variazioni superficiali nei diversi stadi del trattamento.
Resumo:
Tethered bilayer lipid membranes (tBLMs) are a promising model system for the natural cell membrane. They consist of a lipid bilayer that is covalently coupled to a solid support via a spacer group. In this study, we developed a suitable approach to increase the submembrane space in tBLMs. The challenge is to create a membrane with a lower lipid density in order to increase the membrane fluidity, but to avoid defects that might appear due to an increase in the lateral space within the tethered monolayers. Therefore, various synthetic strategies and different monolayer preparation techniques were examined. Synthetical attempts to achieve a large ion reservoir were made in two directions: increasing the spacer length of the tether lipids and increasing the lateral distribution of the lipids in the monolayer. The first resulted in the synthesis of a small library of tether lipids (DPTT, DPHT and DPOT) characterized by 1H and 13C NMR, FD-MS, ATR, DSC and TGA. The synthetic strategy for their preparation includes synthesis of precursor with a double bond anchor that can be easily modified for different substrates (e.g. metal and metaloxide). Here, the double bond was modified into a thiol group suitable for gold surface. Another approach towards the preparation of homogeneous monolayers with decreased two-dimensional packing density was the synthesis of two novel anchor lipids: DPHDL and DDPTT. DPHDL is “self-diluted” tether lipid containing two lipoic anchor moieties. DDPTT has an extended lipophylic part that should lead to the preparation of diluted, leakage free proximal layers that will facilitate the completion of the bilayer. Our tool-box of tether lipids was completed with two fluorescent labeled lipid precursors with respectively one and two phytanyl chains in the hydrophobic region and a dansyl group as a fluorophore. The use of such fluorescently marked lipids is supposed to give additional information for the lipid distribution on the air-water interface. The Langmuir film balance was used to investigate the monolayer properties of four of the synthesized thiolated anchor lipids. The packing density and mixing behaviour were examined. The results have shown that mixing anchor with free lipids can homogeneously dilute the anchor lipid monolayers. Moreover, an increase in the hydrophylicity (PEG chain length) of the anchor lipids leads to a higher packing density. A decrease in the temperature results in a similar trend. However, increasing the number of phytanyl chains per lipid molecule is shown to decrease the packing density. LB-monolayers based on pure and mixed lipids in different ratio and transfer pressure were tested to form tBLMs with diluted inner layers. A combination of the LB-monolayer transfer with the solvent exchange method accomplished successfully the formation of tBLMs based on pure DPOT. Some preliminary investigations of the electrical sealing properties and protein incorporation of self-assembled DPOT and DDPTT-based tBLMs were conducted. The bilayer formation performed by solvent exchange resulted in membranes with high resistances and low capacitances. The appearance of space beneath the membrane is clearly visible in the impedance spectra expressed by a second RC element. The latter brings the conclusion that the longer spacer in DPOT and the bigger lateral space between the DDPTT molecules in the investigated systems essentially influence the electrical parameters of the membrane. Finally, we could show the functional incorporation of the small ion carrier valinomycin in both types of membranes.
Resumo:
Das Protein Cytochrom c Oxidase (CcO) ist ein Enzym der mitochondrialen Atmungskette. Als letzter Komplex (Komplex IV) einer Elektronentransportkette katalysiert sie die Reduktion von molekularem Sauerstoff zu Wasser. Hierbei werden Elektronen von Cytochrom c (Cc) in das Enzym geleitet. Die durch den Redoxprozess freiwerdende freie Enthalpie wird dazu genutzt, einen Protonengradienten über die innere Mitochondrien-Membran aufzubauen. Die zurückwandernden Protonen treiben in der ATP-Synthase die Produktion von Adenosintriphosphat (ATP) an, dem universellen Energieträger in lebenden Organismen. Gegenstand dieser Dissertation sind zeitaufgelöste ATR-FTIR-Messungen des direkten Elektronentransfers in die CcO. Das Protein wird hierzu orientiert auf einer Goldelektrode immobilisiert und in eine künstliche Membran rekonstituiert (Protein-tethered Bilayer Lipid Membrane, ptBLM). Das ptBLM-System wird hinsichtlich einer möglichst hohen Protein-Aktivität optimiert. Elektronen werden durch elektrochemische Anregung von der Elektrode in die CcO injiziert. Die Goldoberfläche wird auf die reflektierende Oberfläche eines Silizium-ATR-Kristalls aufgebracht. Durch die Präparation einer rauen Oberfläche (RMS-Rauigkeit ca. 5 nm) wird eine Verstärkung der IR-Absorption erreicht. Die mit den Ladungstransferprozessen einhergehenden Konformationsänderungen der die Redoxzentren umgebenden Gruppen (CONH-Gerüst und Aminosäure-Seitenketten) können durch Infrarot-Spektroskopie nachgewiesen werden. Phasensensitive Detektion (PSD) wird zur Rauschminderung eingesetzt, um Geschwindigkeitskonstanten für die Redox-Übergänge zu bestimmen. Im Bereich der Amid-I-Bande werden etliche Peaks identifiziert, die sich mit dem Redoxzustand des Proteins ändern. Für das CuA-Zentrum, welches als erstes der vier Redoxzentren der CcO reduziert wird, wird die schnellste Geschwindigkeitskonstante ks=4870/s ermittelt. Für das Häm a3-Zentrum wird eine Geschwindigkeitskonstante von ks=13,8/s ermittelt. Die Ergebnisse sind konsistent zu elektrochemischen und Raman-Spektroskopie-Experimenten, welche ebenfalls in unserer Gruppe durchgeführt wurden. Weitere Themen dieser Dissertation sind der Nachweis der Anwendbarkeit des ptBLM-Systems für andere Membranproteine (Beispiel: bakterielles photosynthetisches Reaktionszentrum) und der Einsatz des ATR-FTIR-Setups für verschiedene künstliche Membransysteme (Aktivitätsnachweis des OR5-Geruchsrezeptors in einer peptidgestützten Membran, Eigenschaften eines Oligoethylenglycol-Spacers).
Resumo:
A novel screening platform for potential retroviral fusion inhibitors on the basis of fully functional membrane‐anchored coiled coil lipopeptide receptors has been established. The work comprises the scrutiny of lateral organization of functional lipids in phase separated bilayers and an in‐depth investigation of the biophysical properties of lipopeptide‐based receptors. Lateral sorting of lipids was detected by the recognition of streptavidin of biotinylated lipids in phase separated bilayers and by nanoscopic patterns in mixed fluorocarbon / hydrocarbon lipid bilayers, employing temperature controlled atomic force microscopy (AFM) as a versatile characterization method. Particular features of fluorocarbon bilayers were additionally investigated in great detail by means of ellipsometry and ATR‐IR spectroscopy. Lipopeptide‐receptors were synthesized on the basis of a robust and reliable in situ coupling reaction by coupling terminal cysteine modified receptor‐peptides to a maleimide functionalized lipid bilayer. Receptor functionality of the lipopeptides was visualized by specific binding of vesicles and nanoparticles tracked by a multiplicity of characterization methods, such as AFM, ellipsometry, CLSM and fluorescence spectroscopy. Finally, in situ coupling of viral peptides, originating from the fusion protein of HIV resulted in a mimic of the pre‐hairpin intermediate of gp41. Structural analysis of N36‐lipopepides by means of CD‐spectroscopy in combination with FT‐IR spectroscopy revealed a coiled coil assembly of lipopeptides, which render the aggregates fully functional receptors for potent fusion inhibitors. Thereby, reversible inhibitor binding of T20 and the corresponding C‐ peptides was detected by AFM and ellipsometry, rendering coiled coil lipopeptides a new promising technique for screening of retroviral fusion inhibitors.
Resumo:
Endodontic therapy consists in the management of several tissues such as pulp tissue, periodontal tissue, periapical bone and dentine. These tissues are often contaminated by blood, periapical exudates and biological fluids. An ideal orthograde or retrograde filling material should be non toxic, noncarcinogenic, nongenotoxic, biocompatible with the host tissues, insoluble in tissue fluids, and dimensionally stable. Calcium-silicate MTA based cements own many of these ideal characteristics, but the long setting time, the non-easy handling and the lack of mechanical properties at early times are few drawbacks which may complicate the clinical application. The aim of this study was to investigate the chemical, physical and biological properties of calcium-silicate MTA cements in order to improve the mechanical properties and the handling keeping the biological characteristics unchanged. Chemical and physical properties such as setting time, solubility, water-uptake, ion release, sealing ability were investigated according the ISO and ADA specifications. The bioactivity (ability to produce apatite nano-sferulities) of MTA cements were evaluated using ESEM/EDX, micro-Raman and ATR/FTIR spettroscopy.
Resumo:
The lateral characteristics of tires in terms of lateral forces as a function of sideslip angle is a focal point in the prediction of ground loads and ground handling aircraft behavior. However, tests to validate such coefficients are not mandatory to obtain Aircraft Type Certification and so they are not available for ATR tires. Anyway, some analytical values are implemented in ATR calculation codes (Flight Qualities in-house numerical code and Loads in-house numerical code). Hence, the goal of my work is to further investigate and validate lateral tires characteristics by means of: exploitation and re-parameterization of existing test on NLG tires, implementation of easy-handle model based on DFDR parameters to compute sideslip angles, application of this model to compute lateral loads on existing flight tests and incident cases, analysis of results. The last part of this work is dedicated to the preliminary study of a methodology to perform a test to retrieve lateral tire loads during ground turning with minimum requirements in terms of aircraft test instrumentation. This represents the basis for future works.
Resumo:
Im Rahmen dieser Arbeit wurde ein flugzeuggetragenes Laserablations-Einzelpartikel-Massenspektrometer von Grund auf entworfen, gebaut, charakterisiert und auf verschiedenen Feldmesskampagnen eingesetzt. Das ALABAMA (Aircraft-based Laser ABlation Aerosol MAss Spectrometer) ist in der Lage die chemische Zusammensetzung und Größe von einzelnen Aerosolpartikeln im submikrometer-Bereich (135 – 900 nm) zu untersuchen.rnNach dem Fokussieren in einer aerodynamischen Linse wird dafür zunächst derrnaerodynamische Durchmesser der einzelnen Partikel mit Hilfe einer Flugzeitmessung zwischen zwei Dauerstrichlasern bestimmt. Anschließend werden die zuvor detektierten und klassifizierten Partikel durch einen gezielten Laserpuls einzeln verdampft und ionisiert. Die Ionen werden in einem bipolaren Flugzeit-Massenspektrometer entsprechend ihrem Masse zu- Ladungs Verhältnisses getrennt und detektiert. Die entstehenden Massenspektren bieten einen detaillierten Einblick in die chemische Struktur der einzelnen Partikel.rnDas gesamte Instrument wurde so konzipiert, dass es auf dem neuen Höhenforschungsflugzeug HALO und anderen mobilen Plattformen eingesetzt werden kann. Um dies zu ermöglichen wurden alle Komponenten in einem Rahmen mit weniger als 0.45 m³ Volumen untergebracht. Das gesamte Instrument inklusive Rahmen wiegt weniger als 150 kg und erfüllt die strengen sicherheitsvorschriften für den Betrieb an Bord von Forschungsflugzeugen. Damit ist ALABAMA das kleinste und leichteste Instrument seiner Art.rnNach dem Aufbau wurden die Eigenschaften und Grenzen aller Komponenten detailliert im Labor und auf Messkampagnen charakterisiert. Dafür wurden zunächst die Eigenschaften des Partikelstrahls, wie beispielsweise Strahlbreite und –divergenz, ausführlich untersucht. Die Ergebnisse waren wichtig, um die späteren Messungen der Detektions- und Ablationseffizienz zu validieren.rnBei den anschließenden Effizienzmessungen wurde gezeigt, dass abhängig von ihrer Größe und Beschaffenheit, bis zu 86 % der vorhandenen Aerosolpartikel erfolgreich detektiert und größenklassifiziert werden. Bis zu 99.5 % der detektierten Partikel konnten ionisiert und somit chemisch untersucht werden. Diese sehr hohen Effizienzen sind insbesondere für Messungen in großer Höhe entscheidend, da dort zum Teil nur sehr geringe Partikelkonzentrationen vorliegen.rnDas bipolare Massenspektrometer erzielt durchschnittliche Massenauflösungen von bis zu R=331. Während Labor- und Feldmessungen konnten dadurch Elemente wie Au, Rb, Co, Ni, Si, Ti und Pb eindeutig anhand ihres Isotopenmusters zugeordnet werden.rnErste Messungen an Bord eines ATR-42 Forschungsflugzeuges während der MEGAPOLI Kampagne in Paris ergaben einen umfassenden Datensatz von Aerosolpartikeln innerhalb der planetaren Grenzschicht. Das ALABAMA konnte unter harten physischen Bedingungen (Temperaturen > 40°C, Beschleunigungen +/- 2 g) verlässlich und präzise betrieben werden. Anhand von charakteristischen Signalen in den Massenspektren konnten die Partikel zuverlässig in 8 chemische Klassen unterteilt werden. Einzelne Klassen konnten dabei bestimmten Quellen zugeordnet werden. So ließen sich beispielsweise Partikel mit starkerrnNatrium- und Kaliumsignatur eindeutig auf die Verbrennung von Biomasse zurückführen.rnALABAMA ist damit ein wertvolles Instrument um Partikel in-situ zu charakterisieren und somit verschiedenste wissenschaftliche Fragestellungen, insbesondere im Bereich der Atmosphärenforschung, zu untersuchen.
Resumo:
The primary goals of this study were to develop a cell-free in vitro assay for the assessment of nonthermal electromagnetic (EMF) bioeffects and to develop theoretical models in accord with current experimental observations. Based upon the hypothesis that EMF effects operate by modulating Ca2+/CaM binding, an in vitro nitric oxide (NO) synthesis assay was developed to assess the effects of a pulsed radiofrequency (PRF) signal used for treatment of postoperative pain and edema. No effects of PRF on NO synthesis were observed. Effects of PRF on Ca2+/CaM binding were also assessed using a Ca2+-selective electrode, also yielding no EMF Ca2+/CaM binding. However, a PRF effect was observed on the interaction of hemoglobin (Hb) with tetrahydrobiopterin, leading to the development of an in vitro Hb deoxygenation assay, showing a reduction in the rate of Hb deoxygenation for exposures to both PRF and a static magnetic field (SMF). Structural studies using pyranine fluorescence, Gd3+ vibronic sideband luminescence and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were conducted in order to ascertain the mechanism of this EMF effect on Hb. Also, the effect of SMF on Hb oxygen saturation (SO2) was assessed under gas-controlled conditions. These studies showed no definitive changes in protein/solvation structure or SO2 under equilibrium conditions, suggesting the need for real-time instrumentation or other means of observing out-of-equilibrium Hb dynamics. Theoretical models were developed for EMF transduction, effects on ion binding, neuronal spike timing, and dynamics of Hb deoxygenation. The EMF sensitivity and simplicity of the Hb deoxygenation assay suggest a new tool to further establish basic biophysical EMF transduction mechanisms. If an EMF-induced increase in the rate of deoxygenation can be demonstrated in vivo, then enhancement of oxygen delivery may be a new therapeutic method by which clinically relevant EMF-mediated enhancement of growth and repair processes can occur.