488 resultados para ALGEBRAS
Resumo:
The multiplicative spectrum of a complex Banach space X is the class K(X) of all (automatically compact and Hausdorff) topological spaces appearing as spectra of Banach algebras (X,*) for all possible continuous multiplications on X turning X into a commutative associative complex algebra with the unity. The properties of the multiplicative spectrum are studied. In particular, we show that K(X^n) consists of countable compact spaces with at most n non-isolated points for any separable hereditarily indecomposable Banach space X. We prove that K(C[0,1]) coincides with the class of all metrizable compact spaces.
Resumo:
We consider the class of crossed products of noetherian domains with universal enveloping algebras of Lie algebras. For algebras from this class we give a sufficient condition for the existence of projective non-free modules. This class includes Weyl algebras and universal envelopings of Lie algebras, for which this question, known as noncommutative Serre's problem, was extensively studied before. It turns out that the method of lifting of non-trivial stably free modules from simple Ore extensions can be applied to crossed products after an appropriate choice of filtration. The motivating examples of crossed products are provided by the class of RIT algebras, originating in non-equilibrium physics.
Resumo:
We introduce multidimensional Schur multipliers and characterise them, generalising well-known results by Grothendieck and Peller. We define a multidimensional version of the two-dimensional operator multipliers studied recently by Kissin and Shulman. The multidimensional operator multipliers are defined as elements of the minimal tensor product of several C *-algebras satisfying certain boundedness conditions. In the case of commutative C*-algebras, the multidimensional operator multipliersreduce to continuousmul-tidimensional Schur multipliers. We show that the multiplierswith respect to some given representations of the corresponding C*-algebrasdo not change if the representations are replaced by approximately equivalent ones. We establish a non-commutative and multidimensional version of the characterisations by Grothendieck and Peller which shows that universal operator multipliers can be obtained ascertain weak limits of elements of the algebraic tensor product of the corresponding C *-algebras.
Resumo:
We continue the study of multidimensional operator multipliers initiated in~cite{jtt}. We introduce the notion of the symbol of an operator multiplier. We characterise completely compact operator multipliers in terms of their symbol as well as in terms of approximation by finite rank multipliers. We give sufficient conditions for the sets of compact and completely compact multipliers to coincide and characterise the cases where an operator multiplier in the minimal tensor product of two C*-algebras is automatically compact. We give a description of multilinear modular completely compact completely bounded maps defined on the direct product of finitely many copies of the C*-algebra of compact operators in terms of tensor products, generalising results of Saar
Resumo:
We prove that two dual operator spaces $X$ and $Y$ are stably isomorphic if and only if there exist completely isometric normal representations $phi$ and $psi$ of $X$ and $Y$, respectively, and ternary rings of operators $M_1, M_2$ such that $phi (X)= [M_2^*psi (Y)M_1]^{-w^*}$ and $psi (Y)=[M_2phi (X)M_1^*].$ We prove that this is equivalent to certain canonical dual operator algebras associated with the operator spaces being stably isomorphic. We apply these operator space results to prove that certain dual operator algebras are stably isomorphic if and only if they are isomorphic. We provide examples motivated by CSL algebra theory.
Resumo:
We investigate the weak amenability of the Banach algebra ß(X) of all bounded linear operators on a Banach space X. Sufficient conditions are given for weak amenability of this and other Banach operator algebras with bounded one-sided approximate identities.
Resumo:
The purpose of the present paper is to lay the foundations for a systematic study of tensor products of operator systems. After giving an axiomatic definition of tensor products in this category, we examine in detail several particular examples of tensor products, including a minimal, maximal, maximal commuting, maximal injective and some asymmetric tensor products. We characterize these tensor products in terms of their universal properties and give descriptions of their positive cones. We also characterize the corresponding tensor products of operator spaces induced by a certain canonical inclusion of an operator space into an operator system. We examine notions of nuclearity for our tensor products which, on the category of C*-algebras, reduce to the classical notion. We exhibit an operator system S which is not completely order isomorphic to a C*-algebra yet has the property that for every C*-algebra A, the minimal and maximal tensor product of S and A are equal.
Resumo:
The main result of the note is a characterization of 1-amenability of Banach algebras of approximable operators for a class of Banach spaces with 1-unconditional bases in terms of a new basis property. It is also shown that amenability and symmetric amenability are equivalent concepts for Banach algebras of approximable operators, and that a type of Banach space that was long suspected to lack property A has in fact the property. Some further ideas on the problem of whether or not amenability (in this setting) implies property A are discussed.
Resumo:
We continue our study of tensor products in the operator system category. We define operator system quotients and exactness in this setting and refine the notion of nuclearity by studying operator systems that preserve various pairs of tensor products. One of our main goals is to relate these refinements of nuclearity to the Kirchberg conjecture. In particular, we prove that the Kirchberg conjecture is equivalent to the statement that every operator system that is (min,er)-nuclear is also (el,c)-nuclear. We show that operator system quotients are not always equal to the corresponding operator space quotients and then study exactness of various operator system tensor products for the operator system quotient. We prove that an operator system is exact for the min tensor product if and only if it is (min,el)-nuclear. We give many characterizations of operator systems that are (min,er)-nuclear, (el,c)-nuclear, (min,el)-nuclear and (el,max)-nuclear. These characterizations involve operator system analogues of various properties from the theory of C*-algebras and operator spaces, including the WEP and LLP.
Resumo:
This paper is a contribution to Mathematical fuzzy logic, in particular to the algebraic study of t-norm based fuzzy logics. In the general framework of propositional core and ?-core fuzzy logics we consider three properties of completeness with respect to any semantics of linearly ordered algebras. Useful algebraic characterizations of these completeness properties are obtained and their relations are studied. Moreover, we concentrate on five kinds of distinguished semantics for these logics-namely the class of algebras defined over the real unit interval, the rational unit interval, the hyperreals (all ultrapowers of the real unit interval), the strict hyperreals (only ultrapowers giving a proper extension of the real unit interval) and finite chains, respectively-and we survey the known completeness methods and results for prominent logics. We also obtain new interesting relations between the real, rational and (strict) hyperreal semantics, and good characterizations for the completeness with respect to the semantics of finite chains. Finally, all completeness properties and distinguished semantics are also considered for the first-order versions of the logics where a number of new results are proved. © 2009 Elsevier B.V. All rights reserved.
Resumo:
We describe the C*-algebras of " ax+b" -like groups in terms of algebras of operator fields defined over their dual spaces.
Resumo:
We use representations of operator systems as quotients to deduce various characterisations of the weak expectation property (WEP) for C∗ -algebras. By Kirchberg’s work on WEP, these results give new formulations of Connes’ embedding problem.
Resumo:
Motivated by the description of the C*-algebra of the affine automorphism group N6,28 of the Siegel upper half-plane of degree 2 as an algebra of operator fields defined over the unitary dual View the MathML source of the group, we introduce a family of C*-algebras, which we call almost C0(K), and we show that the C*-algebra of the group N6,28 belongs to this class.
Resumo:
We define several new types of quantum chromatic numbers of a graph and characterize them in terms of operator system tensor products. We establish inequalities between these chromatic numbers and other parameters of graphs studied in the literature and exhibit a link between them and non-signalling correlation boxes.
Resumo:
Given a heterogeneous relation algebra R, it is well known that the algebra of matrices with coefficient from R is relation algebra with relational sums that is not necessarily finite. When a relational product exists or the point axiom is given, we can represent the relation algebra by concrete binary relations between sets, which means the algebra may be seen as an algebra of Boolean matrices. However, it is not possible to represent every relation algebra. It is well known that the smallest relation algebra that is not representable has only 16 elements. Such an algebra can not be put in a Boolean matrix form.[15] In [15, 16] it was shown that every relation algebra R with relational sums and sub-objects is equivalent to an algebra of matrices over a suitable basis. This basis is given by the integral objects of R, and is, compared to R, much smaller. Aim of my thesis is to develop a system called ReAlM - Relation Algebra Manipulator - that is capable of visualizing computations in arbitrary relation algebras using the matrix approach.