999 resultados para ADP RECEPTOR
Resumo:
A Caucasian male aged 15 years presented with 2 years accelerated linear growth. He was 202 cm tall at presentation, with calculated mid-parental height of 173 cm. There were no features of hypopituitarism or acral growth. His visual fields and optic discs were normal...
Resumo:
Receptor guanylyl cyclase C (GC-C) is the target for the gastrointestinal hormones, guanylin, and uroguanylin as well as the bacterial heat-stable enterotoxins. The major site of expression of GC-C is in the gastrointestinal tract, although this receptor and its ligands play a role in ion secretion in other tissues as well. GC-C shares the domain organization seen in other members of the family of receptor guanylyl cyclases, though subtle differences highlight some of the unique features of GC-C. Gene knock outs in mice for GC-C or its ligands do not lead to embryonic lethality, but modulate responses of these mice to stable toxin peptides, dietary intake of salts, and development and differentiation of intestinal cells. It is clear that there is much to learn in future about the role of this evolutionarily conserved receptor, and its properties in intestinal and extra-intestinal tissues.
Resumo:
Accumulating evidence show that kinins, notably bradykinin (BK) and kallidin, have cardioprotective effects. To these include reduction of left ventricular hypertrophy (LVH) and progression of heart failure. The effects are mediated through two G protein-coupled receptors- bradykinin type-2 receptor (BK-2R) and bradykinin type -1 receptor (BK-1R). The widely accepted cardioprotective effects of BK-receptors relate to triggering the production and release of vasodilating nitric oxide (NO) by endothelial cells. They also exert anti-proliferative effects on fibroblasts and anti-hypertrophic effects on myocytes, and thus may play an essential role in the cardioprotective response to myocardial injury. The role for BK-1Rs in HF is based on experimental animal models, where the receptors have been linked to cardioprotective- but also to cardiotoxic -effects. The BK-1Rs are induced under inflammatory and ischemic conditions, shown in animal models; no previous reports, concerning BK-1Rs in human heart failure, have been presented. The expression of BK-2Rs is down-regulated in human end-stage heart failure. Present results showed that, in these patients, the BK-1Rs were up-regulated, suggesting that also BK-1Rs are involved in the pathogenesis of human heart failure. The receptors were localized mainly in the endothelium of intramyocardial coronary vessels, and correlated with the increased TNF-α expression in the myocardial coronary vessels. Moreover, in cultured endothelial cells, TNF-α was a potent trigger of BK-1Rs. These results suggest that cytokines may be responsible for the up-regulation of BK-1Rs in human heart failure. A linear relationship between BK-2R mRNA and protein expression in normal and failing human left ventricles implies that the BK-2Rs are regulated on the transcriptional level, at least in human myocardium. The expression of BK-2Rs correlated positively with age in normal and dilated hearts (IDC). The results suggest that human hearts adapts to age-related changes, by up-regulating the expression of cardioprotective BK-2Rs. Also, in the BK-2R promoter polymorphism -58 T/C, the C-allele was accumulated in cardiomyopathy patients which may partially explain the reduced number of BK-2Rs. Statins reduce the level of plasma cholesterol, but also exert several non-cholesterol-dependent effects. These effects were studied in human coronary arterial endothelial cells (hCAEC) and incubation with lovastatin induced both BK-1 and BK-2Rs in a time and concentration-dependent way. The induced BK-2Rs were functionally active, thus NO production and cGMP signaling was increased. Induction was abrogated by mevalonate, a direct HMG-CoA metabolite. Lovastatin is known to inhibit Rho activation, and by a selective RhoA kinase inhibitor (Y27632), a similar induction of BK-2R expression as with lovastatin. Interestingly a COX-2-inhibitor (NS398) inhibited this lovastatin-induction of BK-2Rs, suggesting that COX-2 inhibitors may affect the endothelial BK-2Rs, in a negative fashion. Hypoxia is a common denominator in HF but also in other cardiovascular diseases. An induction of BK-2Rs in mild hypoxic conditions was shown in cultured hCAECs, which was abolished by a specific BK-2R inhibitor Icatibant. These receptors were functionally active, thus BK increased and Icatibant inhibited the production of NO. In rat myocardium the expression of BK-2R was increased in the endothelium of vessels, forming at the border zone, between the scar tissue and the healthy myocardium. Moreover, in in vitro wound-healing assay, endothelial cells were cultured under hypoxic conditions and BK significantly increased the migration of these cells and as Icatibant inhibited it. These results show, that mild hypoxia triggers a temporal expression of functionally active BK-2Rs in human and rat endothelial cells, supporting a role for BK-2Rs, in hypoxia induced angiogenesis. Our and previous results show, that BK-Rs have an impact on the cardiovascular diseases. In humans, at the end stage of heart failure, the BK-2Rs are down-regulated and BK-1Rs induced. Whether the up-regulation of BK-1Rs, is a compensatory mechanism against the down-regulation of BK-2Rs, or merely reflects the end point of heart failure, remains to bee seen. In a clinical point of view, the up-regulation of BK-2Rs, under hypoxic conditions or statin treatment, suggests that, the induction of BK-2Rs is protective in cardiovascular pathologies and those treatments activating BK-2Rs, might give additional tools in treating heart failure.
Resumo:
Mycobacterium tuberculosis is the etiologic agent of human tuberculosis and is estimated to infect one-third of the world's population. Control of M. tuberculosis requires T cells and macrophages. T-cell function is modulated by the cytokine environment, which in mycobacterial infection is a balance of proinflammatory (interleukin-1 [IL-1], IL-6, IL-8, IL-12, and tumor necrosis factor alpha) and inhibitory (IL-10 and transforming growth factor beta [TGF-beta]) cytokines. IL-10 and TGF-beta are produced by M. tuberculosis-infected macrophages. The effect of IL-10 and TGF-beta on M. tuberculosis-reactive human CD4(+) and gammadelta T cells, the two major human T-cell subsets activated by M. tuberculosis, was investigated. Both IL-10 and TGF-beta inhibited proliferation and gamma interferon production by CD4(+) and gammadelta T cells. IL-10 was a more potent inhibitor than TGF-beta for both T-cell subsets. Combinations of IL-10 and TGF-beta did not result in additive or synergistic inhibition. IL-10 inhibited gammadelta and CD4(+) T cells directly and inhibited monocyte antigen-presenting cell (APC) function for CD4(+) T cells and, to a lesser extent, for gammadelta T cells. TGF-beta inhibited both CD4(+) and gammadelta T cells directly and had little effect on APC function for gammadelta and CD4(+) T cells. IL-10 down-regulated major histocompatibility complex (MHC) class I, MHC class II, CD40, B7-1, and B7-2 expression on M. tuberculosis-infected monocytes to a greater extent than TGF-beta. Neither cytokine affected the uptake of M. tuberculosis by monocytes. Thus, IL-10 and TGF-beta both inhibited CD4(+) and gammadelta T cells but differed in the mechanism used to inhibit T-cell responses to M. tuberculosis.
Resumo:
Antiplatelet medication is known to decrease adverse effects in patients with atherothrombotic disease. However, despite ongoing antiplatelet medication considerable number of patients suffer from atherothrombotic events. The aims of the study were 1) to evaluate the individual variability in platelet functions and compare the usability of different methods in detecting it, 2) to assess variability in efficacy of antiplatelet medication with aspirin (acetylsalicylic acid) or the combination of aspirin and clopidogrel and 3) to investigate the main genetic and clinical variables as well as potential underlying mechanisms of variability in efficacy of antiplatelet medication. In comparisons of different platelet function tests in 19 healthy individuals PFA-100® correlated with traditional methods of measuring platelet function and was thus considered appropriate for testing individual variability in platelet activity. Efficacy of ongoing 100mg aspirin daily was studied in 101 patients with coronary artery disease (CAD). Aspirin response was measured with arachidonic acid (AA)-induced platelet aggregation, which reflects cyclo-oxygenase (COX)-1 dependent thromboxane (Tx) A2 formation, and PFA-100®, which evaluates platelet activation under high shear stress in the presence of collagen and epinephrine. Five percent of patients failed to show inhibition of AA-aggregation and 21% of patients had normal PFA-100® results despite aspirin and were thus considered non-responders to aspirin. Interestingly, the two methods of assessing aspirin efficacy, platelet aggregation and PFA-100®, detected different populations as being aspirin non-responders. It could be postulated that PFA-100® actually measures enhanced platelet function, which is not directly associated with TxA2 inhibition exerted by aspirin. Clopidogrel efficacy was assessed in 50 patients who received a 300mg loading dose of clopidogrel 2.5 h prior to percutaneous coronary intervention (PCI) and in 51 patients who were given a loading dose of 300mg combined with a five day treatment of 75mg clopidogrel daily mimicking ongoing treatment. Clopidogrel response was assessed with ADP-induced aggregations, due to its mechanism of action as an inhibitor of ADP-induced activation. When patients received only a loading dose of clopidogrel prior to PCI, 40% did not gain measurable inhibition of their ADP-induced platelet activity (inhibition of 10% or less). Prolongation of treatment so that all patients had reached a plateau of inhibition exerted by clopidogrel, decreased the incidence of non-responders to 20%. Polymorphisms of COX-1 and GP VI, as well as diabetes and female gender, were associated with decreased in vitro aspirin efficacy. Diabetes also impaired the in vitro efficacy of short-term clopidogrel. Decreased response to clopidogrel was associated with limited inhibition by ARMX, an antagonist of P2Y12-receptor, suggesting the reason for clopidogrel resistance to be receptor-dependent. Conclusions: Considerable numbers of CAD patients were non-responders either to aspirin, clopidogrel or both. In the future, platelet function tests may be helpful to individually select effective and safe antiplatelet medication for these patients.
Resumo:
The systemic autoinflammatory disorders are a group of rare diseases characterized by periodically recurring episodes of acute inflammation and a rise in serum acute phase proteins, but with no signs of autoimmunity. At present eight hereditary syndromes are categorized as autoinflammatory, although the definition has also occasionally been extended to other inflammatory disorders, such as Crohn s disease. One of the autoinflammatory disorders is the autosomally dominantly inherited tumour necrosis factor receptor-associated periodic syndrome (TRAPS), which is caused by mutations in the gene encoding the tumour necrosis factor type 1 receptor (TNFRSF1A). In patients of Nordic descent, cases of TRAPS and of three other hereditary fevers, hyperimmunoglobulinemia D with periodic fever syndrome (HIDS), chronic infantile neurologic, cutaneous and articular syndrome (CINCA) and familial cold autoinflammatory syndrome (FCAS), have been reported, TRAPS being the most common of the four. Clinical characteristics of TRAPS are recurrent attacks of high spiking fever, associated with inflammation of serosal membranes and joints, myalgia, migratory rash and conjunctivitis or periorbital cellulitis. Systemic AA amyloidosis may occur as a sequel of the systemic inflammation. The aim of this study was to investigate the genetic background of hereditary periodically occurring fever syndromes in Finnish patients, to explore the reliability of determining serum concentrations of soluble TNFRSF1A and metalloproteinase-induced TNFRSF1A shedding as helpful tools in differential diagnostics, as well as to study intracellular NF-κB signalling in an attempt to widen the knowledge of the pathomechanisms underlying TRAPS. Genomic sequencing revealed two novel TNFRSF1A mutations, F112I and C73R, in two Finnish families. F112I was the first TNFRSF1A mutation to be reported in the third extracellular cysteine-rich domain of the gene and C73R was the third novel mutation to be reported in a Finnish family, with only one other TNFRSF1A mutation having been reported in the Nordic countries. We also presented a differential diagnostic problem in a TRAPS patient, emphasizing for the clinician the importance of differential diagnostic vigiliance in dealing with rare hereditary disorders. The underlying genetic disease of the patient both served as a misleading factor, which possibly postponed arrival at the correct diagnosis, but may also have predisposed to the pathologic condition, which led to a critical state of the patient. Using a method of flow cytometric analysis modified for the use on fresh whole blood, we studied intracellular signalling pathways in three Finnish TRAPS families with the F112I, C73R and the previously reported C88Y mutations. Evaluation of TNF-induced phosphorylation of NF-κB and p38, revealed low phosphorylation profiles in nine out of ten TRAPS patients in comparison to healthy control subjects. This study shows that TRAPS is a diagnostic possibility in patients of Nordic descent, with symptoms of periodically recurring fever and inflammation of the serosa and joints. In particular in the case of a family history of febrile episodes, the possibility of TRAPS should be considered, if an etiology of autoimmune or infectious nature is excluded. The discovery of three different mutations in a population as small as the Finnish, reinforces the notion that the extracellular domain of TNFRSF1A is prone to be mutated at the entire stretch of its cysteine-rich domains and not only at a limited number of sites, suggesting the absence of a founder effect in TRAPS. This study also demonstrates the challenges of clinical work in differentiating the symptoms of rare genetic disorders from those of other pathologic conditions and presents the possibility of an autoinflammatory disorder as being the underlying cause of severe clinical complications. Furthermore, functional studies of fresh blood leukocytes show that TRAPS is often associated with a low NF-κB and p38 phosphorylation profile, although low phosphorylation levels are not a requirement for the development of TRAPS. The aberrant signalling would suggest that the hyperinflammatory phenotype of TRAPS is the result of compensatory NF-κB-mediated regulatory mechanisms triggered by a deficiency of the innate immune response.
Resumo:
Androgen deprivation and androgen targeted therapies (ATT) are established treatments for prostate cancer (PCa). Although initially effective, ATT induces an adaptive response that leads to treatment resistance. Increased expression of relaxin-2 (RLN2) is an important alteration in the adaptive response. RLN2 has a well described role in PCa cell proliferation, adhesion and tumour growth. The objectives of this study were to develop cell models for studies of RLN2 signalling and to implement in vitro assays for evaluating the therapeutic properties of the unique RLN2 receptor (RXFP1) antagonist
Resumo:
Reactivation of androgen receptor signalling is one of the hallmarks of prostate cancer progression to the terminal castrate resistant stage. A better understanding of mechanisms driving this adaptive response is essential for the development of innovative intervention strategies that effectively delay or halt prostate cancer progression. The Y-box binding protein 1 (YB-1) has been found to be closely associated with prostate cancer progression. By characterising its role in the adaptive process leading to castrate resistance, we aim to promote YB-1 as a novel therapeutic target in advanced prostate cancer.
Resumo:
Introduction Metastatic spread to the brain is common in patients with non–small cell lung cancer (NSCLC), but these patients are generally excluded from prospective clinical trials. The studies, phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations (LUX-Lung 3) and a randomized, open-label, phase III study of BIBW 2992 versus chemotherapy as first-line treatment for patients with stage IIIB or IV adenocarcinoma of the lung harbouring an EGFR activating mutation (LUX-Lung 6) investigated first-line afatinib versus platinum-based chemotherapy in epidermal growth factor receptor gene (EGFR) mutation-positive patients with NSCLC and included patients with brain metastases; prespecified subgroup analyses are assessed in this article. Methods For both LUX-Lung 3 and LUX-Lung 6, prespecified subgroup analyses of progression-free survival (PFS), overall survival, and objective response rate were undertaken in patients with asymptomatic brain metastases at baseline (n = 35 and n = 46, respectively). Post hoc analyses of clinical outcomes was undertaken in the combined data set (n = 81). Results In both studies, there was a trend toward improved PFS with afatinib versus chemotherapy in patients with brain metastases (LUX-Lung 3: 11.1 versus 5.4 months, hazard ratio [HR] = 0.54, p = 0.1378; LUX-Lung 6: 8.2 versus 4.7 months, HR = 0.47, p = 0.1060). The magnitude of PFS improvement with afatinib was similar to that observed in patients without brain metastases. In combined analysis, PFS was significantly improved with afatinib versus with chemotherapy in patients with brain metastases (8.2 versus 5.4 months; HR, 0.50; p = 0.0297). Afatinib significantly improved the objective response rate versus chemotherapy in patients with brain metastases. Safety findings were consistent with previous reports. Conclusions These findings lend support to the clinical activity of afatinib in EGFR mutation–positive patients with NSCLC and asymptomatic brain metastases.