916 resultados para ACTIVATED PROTEIN C RESISTANCE


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethylene responsive factors (ERFs) are a large family of plant-specific transcription factors that are involved in the regulation of plant development and stress responses. However, little to nothing is known about their role in herbivore-induced defense. We discovered a nucleus-localized ERF gene in rice (Oryza sativa), OsERF3, that was rapidly up-regulated in response to feeding by the rice striped stem borer (SSB) Chilo suppressalis. Antisense and over-expression of OsERF3 revealed that it positively affects transcript levels of two mitogen-activated protein kinases (MAPKs) and two WRKY genes as well as concentrations of jasmonate (JA), salicylate (SA) and the activity of trypsin protease inhibitors (TrypPIs). OsERF3 was also found to mediate the resistance of rice to SSB. On the other hand, OsERF3 was slightly suppressed by the rice brown planthopper (BPH) Nilaparvata lugens (Stål) and increased susceptibility to this piercing sucking insect, possibly by suppressing H2O2 biosynthesis. We propose that OsERF3 affects early components of herbivore-induced defense responses by suppressing MAPK repressors and modulating JA, SA, ethylene and H2O2 pathways as well as plant resistance. Our results also illustrate that OsERF3 acts as a central switch that gears the plant’s metabolism towards an appropriate response to chewing or piercing/sucking insects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryotic signaling modules consisting of a MAPK, a MAPKK and a MAP3K. MAPK cascades are involved in many cellular responses including proliferation, differentiation, apoptosis, stress and immune responses. ^ The first part of this thesis describes the cloning and biochemical analysis of JNKK2, a member of MAPKK gene family. Our results demonstrate that JNKK2 is a specific JNK activator and activates the JNK-dependent signal transduction pathway in vivo by inducing c-Jun and ATF2-mediated gene expression. We also found that JNKK2 is specifically activated by a MAP3K MEKK2 through formation of MEKK2-JNKK2-JNK1 triple complex module. JNKK2 is likely to mediate specific upstream signals to activate JNK cascade. ^ The second part of this thesis describes biochemical and gene disruption analysis of MEKK3, a member of MAP3K gene family. We showed that overexpression of MEKK3 strongly activates both JNK and p38 MAPKs but only weakly activates ERK. MEKK−/− embryos die at about embryonic day (E) 11. MEKK3−/− embryos displayed defects in blood vessel development in the yolk sacs, and in the myocardium and endocardium development at E9.5. The angiogenesis in the head, intersomitic region and placenta was also abnormal. These results demonstrate that MEKK3, a member of MAP3K MEKK/STE11 subgene family, is essential for early embryonic cardiovascular development. Furthermore, it was found that disruption of MEKK3 did not alter the expression of vascular endothelial growth factor-1 (VEGF-1), angiopoietin-1, -2 and their respective receptors Flt-1, Flk-1, Tie-1, Tie-2. Finally, MEKK3 was shown to activate myocyte-specific enhancer factor 2C (MEF2C), a crucial transcription factor for early embryonic cardiovascular development through the p38 MAPK cascade, suggesting that MEF2C is one of the key targets of the MEEKK3 signaling pathway during early embryonic cardiovascular development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In both humans and birds, urate is an important antioxidant when maintained at normal plasma concentrations. Though human kidneys primarily reabsorb filtered urate, while those of birds perform mostly secretion, both maintain urate levels at ~300microM. The importance of maintaining urate levels within the homeostatic range was observed when the study of several prominent diseases revealed an association with hyperuricemia. This study examined the effect of elevated zinc concentration on avian urate secretion. Here, acute exposure of chicken proximal tubule epithelial cells (cPTCs) to zinc stress had no effect on urate secretion, but prolonged zinc-induced cellular stress inhibited active transepithelial urate secretion with no change in Mrp4 expression, glucose transport, or transepithelial resistance. Moreover, zinc had no effect on urate transport by isolated brush border membrane vesicles, suggesting involvement of a more complex cellular stress adaptation. Previous work has demonstrated that AMP-activated protein kinase (AMPK), a critical metabolic regulator, conserves energy during cellular stress by shutting down ATP-utilizing processes and activating ATP-generating processes. Pharmacological activation of AMPK by AICAR produced decreased urate secretion by cPTCs similar to the effect seen with prolonged exposure to zinc, while the AMPK inhibitor Compound C prevented both AICAR and zinc inhibition of urate secretion, suggesting a stress induced mechanism of regulation. Supported by NSF. IACUC #A08-046.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Group B Streptococcus (GBS) is a leading cause of life-threatening infection in neonates and young infants, pregnant women, and non-pregnant adults with underlying medical conditions. Immunization has theoretical potential to prevent significant morbidity and mortality from GBS disease. Alpha C proteinC), found in 70% of non-type III capsule polysaccharide group B Streptococcus, elicits antibodies protective against α C-expressing strains in experimental animals and is an appealing carrier for a GBS conjugate vaccine. We determined whether natural exposure to α C elicits antibodies in women and if high maternal α C-specific serum antibody at delivery is associated with protection against neonatal disease. An ELISA was designed to measure α C-specific IgM and IgG in human sera. A case-control design (1:3 ratio) was used to match α C-expressing GBS colonized and non-colonized women by age and compare quantified serum α C-specific IgM and IgG. Sera also were analyzed from bacteremic neonates and their mothers and from women with invasive GBS disease. Antibody concentrations were compared using t-tests on log-transformed data. Geometric mean concentrations of α C-specific IgM and IgG were similar in sera from 58 α C strain colonized and 174 age-matched non-colonized women (IgG 245 and 313 ng/ml; IgM 257 and 229 ng/ml, respectively). Delivery sera from mothers of 42 neonates with GBS α C sepsis had similar concentrations of α C-specific IgM (245 ng/ml) and IgG (371 ng/ml), but acute sera from 13 women with invasive α C-expressing GBS infection had significantly higher concentrations (IgM 383 and IgG 476 ng/ml [p=0.036 and 0.038, respectively]). Convalescent sera from 5 of these women 16-49 days later had high α C-specific IgM and IgG concentrations (1355 and 4173 ng/ml, respectively). In vitro killing of α C-expressing GBS correlated with total α C-specific antibody concentration. Invasive disease but not colonization elicits α C-specific IgM and IgG in adults. Whether α C-specific IgG induced by vaccine would protect against disease in neonates merits further investigation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterotrimeric GTP-binding proteins, G proteins, are integral components of eukaryotic signaling systems linking extracellular signals to intracellular responses. Through coupling to seven-transmembrane helix receptors, G proteins convey primary signaling events into multi-leveled cascades of intracellular activity by regulating downstream enzymes, collectively called effectors. The effector enzymes regulated by G proteins include adenylyl cyclase, cAMP phosphodiesterase, phospolipase C-β, mitogen-activated protein kinases, and ion channels. ^ Neurospora crassa is a multicellular, filamentous fungus that is capable of both asexual and sexual reproduction by elaboration of specialized, developmentally controlled structures that give rise to either asexual or sexual spores, respectively. N. crassa possesses at least three heterotrimericproteins (GNA-1–3) and one Gβ subunit (GNB-1). GNA-1 was the first microbial protein that could be classified in the Gαi superfamily based on its amino acid identity and demonstration that it is a substrate for ADP-ribosylation by pertussis toxin. ^ Experiments were designed to identify the signal transduction pathways and the effector enzymes regulated by GNA-1. Targeted gene-replacement of gna-1 revealed that GNA-1 controls multiple developmental pathways including both asexual and sexual reproduction, maintenance of growth, and resistance to osmotic stress. The Gαi and Gαz members of the Gαi superfamily negatively regulate adenylyl cyclase activity in mammalian cells; therefore, adenylyl cyclase and cAMP levels were measured in Δgna-1 strains and also in strains that were deleted for both gna-1 and gna-2, a second Gα in N. crassa shown to have overlapping functions with GNA-1. Direct measurements of adenylyl cyclase activity revealed that GNA-1, but not GNA-2, was responsible for GTP-stimulated adenylyl cyclase activity in N. crassa. Furthermore, anti-GNA-1 IgG could specifically inhibit GTP-stimulated adenylyl cyclase activity in wild-type strain extracts. These studies also provided evidence that N. crassa possesses feedback mechanisms that control steady-state cAMP levels through indirect regulation of cAMP-phosphodiesterase activity; mutations in gna-1 and gna-2 were additive in their effect on lowering cAMP-phosphodiesterase activity under growth conditions where steady-state cAMP levels were normal but GTP-stimulated adenylyl cyclase activity was reduced 90% in comparison to control strains. ^ Genetic and biochemical epistasis experiments utilizing a Δ gna-1 cr-1 mutant suggest that GNA-1 is essential for female fertility in a cAMP-independent pathway. Furthermore, deletion of gna-1 in a cr-1 background exacerbated many of the defects already observed in the cr-1 strain including more severe growth restriction and developmental defects. However, deletion of gna-1 had no effect on the increased thermotolerance of cr-1, which has been attributed to loss of cAMP. cr-1 possesses GNA-1 protein, and crude membrane fractions from this strain reconstituted GTP-stimulated adenylyl cyclase activity in Δgna-1 membrane fractions. These studies provide direct evidence for the involvement of Gα proteins in the regulation of adenylyl cyclase activity in eukaryotic microbes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aberrant activation of signal transduction pathways has long been linked to uncontrolled cell proliferation and the development of cancer. The activity of one such signaling module, the Mitogen-Activated Protein Kinase (MAPK) pathway, has been implicated in several cancer types including pancreatic, breast, colon, and lymphoid malignancies. Interestingly, the activation of MAP-Kinase-Kinase-Kinase proteins often leads to the additional activation of NF-κB, a transcription factor that acts as a cell survival signal through its control of antiapoptotic genes. We have investigated the role of a specific dimer form of the NF-κB transcription factor family, NF-κB1 (p50) homodimers, in its control of the proto-oncogene, Bcl-2, and we have identified the MEK/ERK (MAPK) signaling cascade as a mediator of NF-κB1 activity. ^ Two murine B cell lymphoma cell lines were used for these studies: LY-as, an apoptosis proficient line with low Bcl-2 protein expression and no nuclear NF-κB activity, and LY-ar, a nonapoptotic line with constitutive p50 homodimer activity and 30 times more Bcl-2 protein expression than LY-as. Experiments modulating p50 activity correlated the activation of p50 homodimers with Bcl-2 expression and additional gel shift experiments demonstrated that the Bcl-2 P1 promoter had NF-κB sites with which recombinant p50 was able to interact. In vitro transcription revealed that p50 enhanced the production of transcripts derived from the Bcl-2 P1 promoter. These data strongly suggest that Bcl-2 is a target gene for p50-mediated transcription and suggest that the activation of p50 homodimers contributes to the expression of Bcl-2 observed in LY-ar cells. ^ Studies of upstream MAPK pathways that could influence NF-κB activity demonstrated that LY-ar cells had phosphorylated ERK proteins while LY-as cells did not. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK, a reversal of nuclear p50 homodimer DNA binding, and a decrease in the amount of Bcl-2 protein expression. Similarly, the activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with TNFα, an IKK activator, did not change the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an IKK-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. ^ These data indicate that the activation of the MEK/ERK MAP-Kinase signaling pathway acts upstream of p50 homodimer activation and Bcl-2 expression in this B cell lymphoma cell system and suggest that the activation of MEK/ERK may be a key step in the progression of lymphoma to advanced-staged disease. Other researchers have used MEK inhibitors to inhibit cell growth and sensitize a number of tumors to chemotherapies. In light of our data, MEK inhibitors may additionally be useful clinically to radiosensitize cancers of lymphoid origin. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens. Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2). Accordingly, we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina. To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance, we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P. cucumerina. This analysis, together with metabolomic studies, demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi, such as the salicylic acid, jasmonic acid, ethylene, abscisic acid, and tryptophan-derived metabolites signaling, as these pathways were not impaired in agb1 and agg1 agg2 mutants. Notably, many mis-regulated genes in agb1 plants were related with cell wall functions, which was also the case in agg1 agg2 mutant. Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants, and that mutant walls had similar FTIR spectratypes, which differed from that of wild-type plants. The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant mitogen-activated protein kinase (MAPK) casca des transduce environmental molecular signals and developmental cues into cellular responses. Among these signals are the pathogen-associated molecular patterns (PAMPs) that upon recognition by plant pattern recognition receptors (PRR), including Receptor-Like Kinases (RLKs), activate MAPK cascades that regulate PAMP-triggered immunity responses (PTI).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Components of cellular stress responses can be identified by correlating changes in stress tolerance with gain or loss of function of defined genes. Previous work has shown that yeast cells deficient in Ppz1 protein phosphatase or overexpressing Hal3p, a novel regulatory protein of unknown function, exhibit increased resistance to sodium and lithium, whereas cells lacking Hal3p display increased sensitivity. These effects are largely a result of changes in expression of ENA1, encoding the major cation extrusion pump of yeast cells. Disruption or overexpression of HAL3 (also known as SIS2) has no effect on salt tolerance in the absence of PPZ1, suggesting that Hal3p might function upstream of Ppz1p in a novel signal transduction pathway. Hal3p is recovered from crude yeast homogenates by using immobilized, bacterially expressed Ppz1p fused to glutathione S-transferase, and it also copurifies with affinity-purified glutathione S-transferase-Ppz1p from yeast extracts. In both cases, the interaction is stronger when only the carboxyl-terminal catalytic phosphatase domain of Ppz1p is expressed. In vitro experiments reveal that the protein phosphatase activity of Ppz1p is inhibited by Hal3p. Overexpression of Hal3p suppresses the reduced growth rate because of the overexpression of Ppz1p and aggravates the lytic phenotype of a slt2/mpk1 mitogen-activated protein kinase mutant (thus mimicking the deletion of PPZ1). Therefore, Hal3p might modulate diverse physiological functions of the Ppz1 phosphatase, such as salt stress tolerance and cell cycle progression, by acting as a inhibitory subunit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have identified a mammalian protein called GIPC (for GAIP interacting protein, C terminus), which has a central PDZ domain and a C-terminal acyl carrier protein (ACP) domain. The PDZ domain of GIPC specifically interacts with RGS-GAIP, a GTPase-activating protein (GAP) for Gαi subunits recently localized on clathrin-coated vesicles. Analysis of deletion mutants indicated that the PDZ domain of GIPC specifically interacts with the C terminus of GAIP (11 amino acids) in the yeast two-hybrid system and glutathione S-transferase (GST)-GIPC pull-down assays, but GIPC does not interact with other members of the RGS (regulators of G protein signaling) family tested. This finding is in keeping with the fact that the C terminus of GAIP is unique and possesses a modified C-terminal PDZ-binding motif (SEA). By immunoblotting of membrane fractions prepared from HeLa cells, we found that there are two pools of GIPC–a soluble or cytosolic pool (70%) and a membrane-associated pool (30%). By immunofluorescence, endogenous and GFP-tagged GIPC show both a diffuse and punctate cytoplasmic distribution in HeLa cells reflecting, respectively, the existence of soluble and membrane-associated pools. By immunoelectron microscopy the membrane pool of GIPC is associated with clusters of vesicles located near the plasma membrane. These data provide direct evidence that the C terminus of a RGS protein is involved in interactions specific for a given RGS protein and implicates GAIP in regulation of additional functions besides its GAP activity. The location of GIPC together with its binding to GAIP suggest that GAIP and GIPC may be components of a G protein-coupled signaling complex involved in the regulation of vesicular trafficking. The presence of an ACP domain suggests a putative function for GIPC in the acylation of vesicle-bound proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A myelin basic protein (MBP)-specific BALB/c T helper 1 (Th1) clone was transduced with cDNA for murine latent transforming growth factor-β1 (TGF-β1) by coculture with fibroblasts producing a genetically engineered retrovirus. When SJL x BALB/c F1 mice, immunized 12–15 days earlier with proteolipid protein in complete Freund’s adjuvant, were injected with 3 × 106 cells from MBP-activated untransduced cloned Th1 cells, the severity of experimental allergic encephalomyelitis (EAE) was slightly increased. In contrast, MBP-activated (but not resting) latent TGF-β1-transduced T cells significantly delayed and ameliorated EAE development. This protective effect was negated by simultaneously injected anti-TGF-β1. The transduced cells secreted 2–4 ng/ml of latent TGF-β1 into their culture medium, whereas control cells secreted barely detectable amounts. mRNA profiles for tumor necrosis factor, lymphotoxin, and interferon-γ were similar before and after transduction; interleukin-4 and -10 were absent. TGF-β1-transduced and antigen-activated BALB/c Th1 clones, specific for hemocyanin or ovalbumin, did not ameliorate EAE. Spinal cords from mice, taken 12 days after receiving TGF-β1-transduced, antigen-activated cells, contained detectable amounts of TGF-β1 cDNA. We conclude that latent TGF-β1-transduced, self-reactive T cell clones may be useful in the therapy of autoimmune diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, TAP42 was isolated as a high copy suppressor of sit4−, a yeast phosphatase related to protein phosphatase 2A (PP2A). TAP42 is related to the murine α4 protein, which was discovered independently by its association with Ig-α in the B cell receptor complex. Herein we show that a glutathione S-transferase (GST)–α4 fusion protein bound the catalytic subunit (C) of human PP2A from monomeric or multimeric preparations of PP2A in a “pull-down” assay. In an overlay assay, the GST–α4 protein bound to the phosphorylated and unphosphorylated forms of C that were separated in two-dimensional gels and immobilized on filters. The results show direct and exclusive binding of α4 to C. This is unusual because all known regulatory B subunits, or tumor virus antigens, bind stably only to the AC dimer of PP2A. The α4–C form of PP2A had an increased activity ratio compared with the AC form of PP2A when myelin basic protein phosphorylated by mitogen-activated protein kinase and phosphorylase a were used as substrates. Recombinant α4 cleaved from GST was phosphorylated by p56lck tyrosine kinase and protein kinase C. A FLAG-tagged α4 expressed in COS7 cells was recovered as a protein containing phosphoserine and coimmunoprecipitated with the C but not the A subunit of PP2A. Treatment of cells with rapamycin prevented the association of PP2A with FLAG-α4. The results reveal a novel heterodimer α4–C form of PP2A that may be involved in rapamycin-sensitive signaling pathways in mammalian cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian cells defective in DNA end-joining are highly sensitive to ionizing radiation and are immunodeficient because of a failure to complete V(D)J recombination. By using cell-free extracts prepared from human lymphoblastoid cell lines, an in vitro system for end-joining has been developed. Intermolecular ligation was found to be accurate and to depend on DNA ligase IV/Xrcc4 and requires Ku70, Ku86, and DNA-PKcs, the three subunits of the DNA-activated protein kinase DNA-PK. Because these activities are involved in the cellular resistance to x-irradiation and V(D)J recombination, the development of this in vitro system provides an important advance in the study of the mechanism of DNA end-joining in human cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of signaling via the JNK (c-Jun NH2-terminal kinase)/stress-activated protein kinase cascade to stimulate or inhibit DNA synthesis in primary cultures of adult rat hepatocytes was examined. Treatment of hepatocytes with media containing hyperosmotic glucose (75 mM final), tumor necrosis factor α (TNFα, 1 ng/ml final), and hepatocyte growth factor (HGF, 1 ng/ml final) caused activation of JNK1. Glucose, TNFα, or HGF treatments increased phosphorylation of c-Jun at serine 63 in the transactivation domain and stimulated hepatocyte DNA synthesis. Infection of hepatocytes with poly-l-lysine–coated adenoviruses coupled to constructs to express either dominant negatives Ras N17, Rac1 N17, Cdc42 N17, SEK1−, or JNK1− blunted the abilities of glucose, TNFα, or HGF to increase JNK1 activity, to increase phosphorylation of c-Jun at serine 63, and to stimulate DNA synthesis. Furthermore, infection of hepatocytes by a recombinant adenovirus expressing a dominant-negative c-Jun mutant (TAM67) also blunted the abilities of glucose, TNFα, and HGF to stimulate DNA synthesis. These data demonstrate that multiple agonists stimulate DNA synthesis in primary cultures of hepatocytes via a Ras/Rac1/Cdc42/SEK/JNK/c-Jun pathway. Glucose and HGF treatments reduced glycogen synthase kinase 3 (GSK3) activity and increased c-Jun DNA binding. Co-infection of hepatocytes with recombinant adenoviruses to express dominant- negative forms of PI3 kinase (p110α/p110γ) increased basal GSK3 activity, blocked the abilities of glucose and HGF treatments to inhibit GSK3 activity, and reduced basal c-Jun DNA binding. However, expression of dominant-negative PI3 kinase (p110α/p110γ) neither significantly blunted the abilities of glucose and HGF treatments to increase c-Jun DNA binding, nor inhibited the ability of these agonists to stimulate DNA synthesis. These data suggest that signaling by the JNK/stress-activated protein kinase cascade, rather than by the PI3 kinase cascade, plays the pivotal role in the ability of agonists to stimulate DNA synthesis in primary cultures of rat hepatocytes.