996 resultados para 770399 Other
Resumo:
We have carried out a three-part study comparing the research performance of Indian institutions with that of other international institutions. In the first part, the publication profiles of various Indian institutions were examined and ranked based on the h-index and p-index. We found that the institutions of national importance contributed the highest in terms of publications and citations per institution. In the second part of the study, we looked at the publication profiles of various Indian institutions in the high-impact journals and compared these profiles against that of the top Asian and US universities. We found that the number of papers in these journals from India was miniscule compared to the US universities. Recognizing that the publication profiles of various institutions depend on the field/departments, we studied the publication profiles of many science and engineering departments at the Indian Institute of Science (IISc), Bangalore, the Indian Institutes of Technology, as well as top Indian universities. Because the number of faculty in each department varies widely, we have computed the publications and citations per faculty per year for each department. We have also compared this with other departments in various Asian and US universities. We found that the top Indian institution based on various parameters in various disciplines was IISc, but overall even the top Indian institutions do not compare favourably with the top US or Asian universities.
Resumo:
The crystal structures of two forms of Mycobacterium leprae single-stranded DNA-binding protein (SSB) have been determined at 2.05 and 2.8 A resolution. Comparison of these structures with the structures of other eubacterial SSBs indicates considerable variation in their quaternary association, although the DNA-binding domains in all of them exhibit the same OB-fold. This variation has no linear correlation with sequence variation, but could be related to variation in protein stability. Molecular-dynamics simulations have been carried out on tetrameric molecules derived from the two forms and the prototype Escherichia coli SSB and the individual subunits of both proteins. Together, the X-ray studies and molecular-dynamics simulations yield information on the relatively rigid and flexible regions of the molecule and on the effect of oligomerization on flexibility. The simulations provide insight into the changes in subunit structure on oligomerization. They also provide insight into the stability and time evolution of the hydrogen bonds/water bridges that connect the two pairs of monomers in the tetramer.
Resumo:
A first comprehensive investigation on the deflagration of ammonium perchlorate (AP) in the subcritical regime, below the low pressure deflagration limit (LPL, 2.03 MPa) christened as regime I$^{\prime}$, is discussed by using an elegant thermodynamic approach. In this regime, deflagration was effected by augmenting the initial temperature (T$_{0}$) of the AP strand and by adding fuels like aliphatic dicarboxylic acids or polymers like carboxy terminated polybutadiene (CTPB). From this thermodynamic model, considering the dependence of burning rate ($\dot{r}$) on pressure (P) and T$_{0}$, the true condensed (E$_{\text{s,c}}$) and gas phase (E$_{\text{s,g}}$) activation energies, just below and above the surface respectively, have been obtained and the data clearly distinguishes the deflagration mechanisms in regime I$^{\prime}$ and I (2.03-6.08 MPa). Substantial reduction in the E$_{\text{s,c}}$ of regime I$^{\prime}$, compared to that of regime I, is attributed to HClO$_{4}$ catalysed decomposition of AP. HClO$_{4}$ formation, which occurs only in regime I$^{\prime}$, promotes dent formation on the surface as revealed by the reflectance photomicrographs, in contrast to the smooth surface in regime I. The HClO$_{4}$ vapours, in regime I$^{\prime}$, also catalyse the gas phase reactions and thus bring down the E$_{\text{s,g}}$ too. The excess heat transferred on to the surface from the gas phase is used to melt AP and hence E$_{\text{s,c}}$, in regime I, corresponds to the melt AP decomposition. It is consistent with the similar variation observed for both the melt layer thickness and $\dot{r}$ as a function of P. Thermochemical calculations of the surface heat release support the thermodynamic model and reveal that the AP sublimation reduces the required critical exothermicity of 1108.8 kJ kg$^{-1}$ at the surface. It accounts for the AP not sustaining combustion in the subcritical regime I$^{\prime}$. Further support for the model comes from the temperature-time profiles of the combustion train of AP. The gas and condensed phase enthalpies, derived from the profile, give excellent agreement with those computed thermochemically. The $\sigma _{\text{p}}$ expressions derived from this model establish the mechanistic distinction of regime I$^{\prime}$ and I and thus lend support to the thermodynamic model. On comparing the deflagration of strand against powder AP, the proposed thermodynamic model correctly predicts that the total enthalpy of the condensed and gas phases remains unaltered. However, 16% of AP particles undergo buoyant lifting into the gas phase in the `free board region' (FBR) and this renders the demarcation of the true surface difficult. It is found that T$_{\text{s}}$ lies in the FBR and due to this, in regime I$^{\prime}$, the E$_{\text{s,c}}$ of powder AP matches with the E$_{\text{s,g}}$ of the pellet. The model was extended to AP/dicarboxylic acids and AP/CTPB mixture. The condensed ($\Delta $H$_{1}$) and gas phase ($\Delta $H$_{2}$) enthalpies were obtained from the temperature profile analyses which fit well with those computed thermochemically. The $\Delta $H$_{1}$ of the AP/succinic acid mixture was found just at the threshold of sustaining combustion. Indeed the lower homologue malonic acid, as predicted, does not sustain combustion. In vaporizable fuels like sebacic acid the E$_{\text{s,c}}$ in regime I$^{\prime}$, understandably, conforms to the AP decomposition. However, the E$_{\text{s,c}}$ in AP/CTPB system corresponds to the softening of the polymer which covers AP particles to promote extensive condensed phase reactions. The proposed thermodynamic model also satisfactorily explains certain unique features like intermittent, plateau and flameless combustion in AP/ polymeric fuel systems.
Resumo:
A novel universal approach to understand the self-deflagration in solids has been attempted by using basic thermodynamic equation of partial differentiation, where burning mte depends on the initial temperature and pressure of the system. Self-deflagrating solids are rare and are reported only in few compounds like ammonium perchlorate (AP), polystyrene peroxide and tetrazole. This approach has led us to understand the unique characteristics of AP, viz. the existence of low pressure deflagration limit (LPL 20 atm), hitherto not understood sufficiently. This analysis infers that the overall surface activation energy comprises of two components governed by the condensed phase and gas phase processes. The most attractive feature of the model is the identification of a new subcritical regime I' below LPL where AP does not burn. The model is aptly supported by the thermochemical computations and temperature-profile analyses of the combustion train. The thermodynamic model is further corroborated from the kinetic analysis of the high pressure (1-30 atm) DTA thermograms which affords distinct empirical decomposition rate laws in regimes I' and 1 (20-60 atm). Using Fourier-Kirchoff one dimensional heat transfer differential equation, the phase transition thickness and the melt-layer thickness have been computed which conform to the experimental data.
Resumo:
This dissertation empirically explored interest as a motivational force in university studies, including the role it currently plays and possible ways of enhancing this role as a student motivator. The general research questions were as follows: 1) What role does interest play in university studies? 2) What explains academic success if studying is not based on interest? 3) How do different learning environments support or impede interest-based studying? Four empirical studies addressed these questions. Study 1 (n=536) compared first-year students explanations of their disciplinary choices in three fields: veterinary medicine, humanities and law. Study 2 (n=28) focused on the role of individual interest in the humanities and veterinary medicine, fields which are very different from each other as regards their nature of studying. Study 3 (n=52) explored veterinary students motivation and study practices in relation to their study success. Study 4 (n=16) explored veterinary students interest experience in individual lectures on a daily basis. By comparing different fields and focusing on one study field in more detail, it was possible to obtain a many-sided picture of the role of interest in different learning environments. Questionnaires and quantitative methods have often been used to measure interest in academic learning. The present work is based mostly on qualitative data, and qualitative methods were applied to add to the previous research. Study 1 explored students open-ended answers, and these provided a basis for the interviews in Study 2. Study 3 explored veterinary students portfolios in a longitudinal setting. For Study 4, a diary including both qualitative and quantitative measures was designed to capture veterinary students interest experience. Qualitative content analysis was applied in all four studies, but quantitative analyses were also added. The thesis showed that university students often explain their disciplinary choices in terms of interest. Because interest is related to high-quality learning, the students seemed to have a good foundation for successful studies. However, the learning environments did not always support interest-based studying; Time-management and coping skills were found to be more important than interest in terms of study success. The results also indicated that interest is not the only motivational variable behind university studies. For example, future goals are needed in order to complete a degree. Even so, the results clearly indicated that it would be worth supporting interest-based studying both in professionally and generally oriented study fields. This support is important not only to promote high-quality learning but also meaningful studying, student well-being, and life-long learning.
Resumo:
Parkinson´s Disease (PD) is a neurodegenerative movement disorder resulting from loss of dopaminergic (DA) neurons in substantia nigra (SN). Possible causative treatment strategies for PD include neurotrophic factors, which protect and in some cases restore the function of dopaminergic neurons. Glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors have been to date the most promising candidates for treatment of PD, demonstrating both neuroprotective and neurorestorative properties. We have investigated the role of GDNF in the rodent dopaminergic system and its possible crosstalk with other growth factors. We characterized the GDNF-induced gene expression changes by DNA microarray analysis in different neuronal systems, including in vitro cultured Neuro2A cells treated with GDNF, as well as midbrains from GDNF heterozygous (Hz) knockout mice. These microarray experiments, resulted in the identification of GDNF-induced genes, which were also confirmed by other methods. Further analysis of the dopaminergic system of GDNF Hz mice demonstrated about 40% reduction in GDNF levels, revealed increased intracellular dopamine concentrations and FosB/DeltaFosB expression in striatal areas. These animals did not show any significant changes in behavioural analysis of acute and repeated cocaine administration on locomotor activity, nor did they exhibit any changes in dopamine output following treatment with acute cocaine. We further analysed the significance of GDNF receptor RET signalling in dopaminergic system of MEN2B knock-in animals with constitutively active Ret. The MEN2B animals showed a robust increase in extracellular dopamine and its metabolite levels in striatum, increased tyrosine hydroxylase (TH) and dopamine transporter (DAT) protein levels by immunohistochemical staining and Western blotting, as well as increased Th mRNA levels in SN. MEN2B mice had increased number of DA neurons in SN by about 25% and they also exhibited increased sensitivity to the stimulatory effects of cocaine. We also developed a semi-throughput in vitro micro-island assay for the quantification of neuronal survival and TH levels by computer-assisted methodology from limited amounts of tissue. This assay can be applied for the initial screening for dopaminotrophic molecules, as well as chemical drug library screening. It is applicable to any neuronal system for the screening of neurotrophic molecules. Since our microarray experiments revealed possible GDNF-VEGF-C crosstalk we further concentrated on studying the neurotrophic effects of VEGF-C. We showed that VEGF-C acts as a neurotrophic molecule for the DA neurons both in vitro and in vivo, however without additive effect when used together with GDNF. The neuroprotective effect for VEGF-C in vivo in rat 6-OHDA model of PD was demonstrated. The possible signalling mechanisms of VEGF-C in the nervous system were investigated - infusion of VEGF-C to rat brain induced ERK activation, however no direct activation of RET signalling in vitro was found. VEGF-C treatment of rat striatum lead to up-regulation of VEGFR-1-3, indicating that VEGF-C can regulate the expression level of its own receptor. VEGF-C dopaminotrophic activity in vivo was further supported by increased vascular tissue in the neuroprotection experiments.
Resumo:
Code Division Multiple Access (CDMA) techniques, by far, had been applied to LAN problems by many investigators, An analytical study of well known algorithms for generation of Orthogonal codes used in FO-CDMA systems like those for prime, quasi-Prime, Optical Orthogonal and Matrix codes has been presented, Algorithms for OOCs like Greedy/Modified Greedy/Accelerated Greedy algorithms are implemented. Many speed-up enhancements. for these algorithms are suggested. A novel Synthetic Algorithm based on Difference Sets (SADS) is also proposed. Investigations are made to vectorise/parallelise SADS to implement the source code on parallel machines. A new matrix for code families of OOCs with different seed code-words but having the same (n,w,lambda) set is formulated.
Resumo:
C-70 films deposited on highly oriented pyrolytic graphite (HOPG), Ag(110), Ag(111) and Pt(110) substrates have been investigated by scanning tunnelling microscopy. Interesting observations on novel molecular arrangements, as well as orientational disorder, are presented. Solid solutions of C-60 and C-70 show interesting packing of these molecules when deposited on HOPG.
Resumo:
The technique of nebulized spray pyrolysis has been explored to find out whether oriented films of certain important oxides can be produced on single-crystal substrates by this relatively gentle method. Starting with acetylacetonate precursors, oriented films of metallic LaNiO3 containing nearly spherical grains (30 nm) have been obtained. Films of near-stoichiometric La4Ni3O10 and La3Ni2O7 showing metallic conductivity have been obtained by this method. This is indeed gratifying since it is difficult to prepare monophasic and stoichiometric bulk samples of these materials. Films of La2NiO4 show the expected semiconducting behavior. In the La-Cu-O system, starting with acetylacetonates, we have obtained films mainly comprising semiconducting La2Cu2O5, which is generally difficult to prepare in bulk form. More interestingly, nebulized spray pyrolysis gives excellent stoichiometric films of Pb(Zr0.52Ti0.48)O-3 consisting of nearly spherical grains (30 nm) which show ferroelectric behavior. The present investigation demonstrates that nebulized spray pyrolysis provides a useful and desirable route to deposite oriented films of complex oxide materials on single-crystal substrates.
Resumo:
A scanning tunneling microscopy study of carbon nanocapsules (onions) is reported for the first time. Spherulitic graphite is shown to be purely crystalline graphite based on X-ray diffraction and electron microscopy studies.
Resumo:
Equilibrium thermodynamic analysis has been applied to the low-pressure MOCVD process using manganese acetylacetonate as the precursor. ``CVD phase stability diagrams'' have been constructed separately for the processes carried out in argon and oxygen ambient, depicting the compositions of the resulting films as functions of CVD parameters. For the process conduced in argon ambient, the analysis predicts the simultaneous deposition of MnO and elemental carbon in 1: 3 molar proportion, over a range of temperatures. The analysis predicts also that, if CVD is carried out in oxygen ambient, even a very low flow of oxygen leads to the complete absence of carbon in the film deposited oxygen, with greater oxygen flow resulting in the simultaneous deposition of two different manganese oxides under certain conditions. The results of thermodynamic modeling have been verified quantitatively for low-pressure CVD conducted in argon ambient. Indeed, the large excess of carbon in the deposit is found to constitute a MnO/C nanocomposite, the associated cauliflower-like morphology making it a promising candidate for electrode material in supercapacitors. CVD carried out in oxygen flow, under specific conditions, leads to the deposition of more than one manganese oxide, as expected from thermodynamic analysis ( and forming an oxide-oxide nanocomposite). These results together demonstrate that thermodynamic analysis of the MOCVD process can be employed to synthesize thin films in a predictive manner, thus avoiding the inefficient trial-and-error method usually associated with MOCVD process development. The prospect of developing thin films of novel compositions and characteristics in a predictive manner, through the appropriate choice of CVD precursors and process conditions, emerges from the present work.
Resumo:
Vibrational phase relaxation near gas-liquid and liquid-solid phase coexistence has been studied by molecular dynamics simulations of N-N stretch in N-2. Experimentally observed pronounced insensitivity of phase relaxation from the triple point to beyond the boiling point is found to originate from a competition between density relaxation and resonant-energy transfer terms. The sharp rise in relaxation rate near the critical point (CP) can be attributed at least partly to the sharp, rise in vibration-rotation coupling contribution. Substantial subquadratic quantum number dependence of overtone dephasing rate is found near the CP and in supercritical fluids. [S0031-9007 (99)09318-7].