990 resultados para 490
Resumo:
We develop a model for stochastic processes with random marginal distributions. Our model relies on a stick-breaking construction for the marginal distribution of the process, and introduces dependence across locations by using a latent Gaussian copula model as the mechanism for selecting the atoms. The resulting latent stick-breaking process (LaSBP) induces a random partition of the index space, with points closer in space having a higher probability of being in the same cluster. We develop an efficient and straightforward Markov chain Monte Carlo (MCMC) algorithm for computation and discuss applications in financial econometrics and ecology. This article has supplementary material online.
Resumo:
Esta es una experiencia de aula llevada a cabo en el ciclo 2, la cual estuvo a cargo de dos profesoras practicantes quienes promovieron la estructura multiplicativa hasta identificar los múltiplos y divisores de un número, dicha experiencia se rigió desde lo metodológico por la estructura propuesta por el grupo DECA (); a nivel conceptual por varios autores como Verganud, Maza (1991),y otros; y finalmente el marco legal por los Estándares Básicos (2007) y los Lineamientos (1998. Se realizaron una serie de actividades que promovieron el reconocimiento y conceptualización de la división como reparticiones equitativas, y promovieron la reflexión tanto de los estudiantes como de las profesoras, en torno a la utilidad, facilidad y aceptación de las actividades para la comprensión de los estudiantes.
Resumo:
Se reporta un estudio de casos realizado con estudiantes de 16-17 años en relación con sus concepciones sobre la gráfica de una función lineal de dominio discreto. En este estudio detectamos que los alumnos presentan dificultades en concebir la gráfica de una función cuando su dominio no es el conjunto de los números reales pues no consideran como gráficas de funciones a aquellas que sean un conjunto de “puntos” y que no formen una “línea continua”.
Resumo:
The electronics industry and the problems associated with the cooling of microelectronic equipment are developing rapidly. Thermal engineers now find it necessary to consider the complex area of equipment cooling at some level. This continually growing industry also faces heightened pressure from consumers to provide electronic product miniaturization, which in itself increases the demand for accurate thermal management predictions to assure product reliability. Computational fluid dynamics (CFD) is considered a powerful and almost essential tool for the design, development and optimization of engineering applications. CFD is now widely used within the electronics packaging design community to thermally characterize the performance of both the electronic component and system environment. This paper discusses CFD results for a large variety of investigated turbulence models. Comparison against experimental data illustrates the predictive accuracy of currently used models and highlights the growing demand for greater mathematical modelling accuracy with regards to thermal characterization. Also a newly formulated low Reynolds number (i.e. transitional) turbulence model is proposed with emphasis on hybrid techniques.
Resumo:
This survey on calorimetry and thermodynamics of anoxibiosis applies classical and irreversible thermodynamics to interpret experimental, direct calorimetric results in order to elucidate the sequential activation of various biochemical pathways. First, the concept of direct and indirect calorimetry is expanded to incorporate the thermochemistry of aerobic and anoxic metabolism in living cells and organisms. Calorimetric studies done under normoxia as well as under physiological and environmental anoxia are presented and assessed in terms of ATP turnover rate. Present evidence suggests that unknown sources of energy in freshwater and marine invertebrates under long-term anoxia may be important. During physiological hypoxia, thermodynamically grossly inefficient pathways sustain high metabolic rates for brief periods. On the contrary, under long-term environmental anoxia, low steady-state heat dissipation is linked to the more efficient succinate, propionate, and acetate pathways. In the second part of this paper these relationships are discussed in the context of linear, irreversible thermodynamics. The calorimetric and biochemical trends during aerobic-anoxic transitions are consistent with thermodynamic optimum functions of catabolic pathways. The theory predicts a decrease of rate with an increase of thermodynamic efficiency; therefore maximum rate and maximum efficiency are mutually exclusive. Cellular changes of pH and adenylate phosphorylation potential are recognized as regulatory mechanisms in the energetic switching to propionate production. While enzyme kinetics provides one key for understanding metabolic regulation, our insight remains incomplete without a complementary thermodynamic analysis of kinetic control in energetically coupled pathways.
Resumo:
Assigning uncertainty to ocean-color satellite products is a requirement to allow informed use of these data. Here, uncertainty estimates are derived using the comparison on a 12th-degree grid of coincident daily records of the remote-sensing reflectance RRS obtained with the same processing chain from three satellite missions, MERIS, MODIS and SeaWiFS. The approach is spatially resolved and produces σ, the part of the RRS uncertainty budget associated with random effects. The global average of σ decreases with wavelength from approximately 0.7– 0.9 10−3 sr−1 at 412 nm to 0.05–0.1 10−3 sr−1 at the red band, with uncertainties on σ evaluated as 20–30% between 412 and 555 nm, and 30–40% at 670 nm. The distribution of σ shows a restricted spatial variability and small variations with season, which makes the multi-annual global distribution of σ an estimate applicable to all retrievals of the considered missions. The comparison of σ with other uncertainty estimates derived from field data or with the support of algorithms provides a consistent picture. When translated in relative terms, and assuming a relatively low bias, the distribution of σ suggests that the objective of a 5% uncertainty is fulfilled between 412 and 490 nm for oligotrophic waters (chlorophyll-a concentration below 0.1 mg m−3). This study also provides comparison statistics. Spectrally, the mean absolute relative difference between RRS from different missions shows a characteristic U-shape with both ends at blue and red wavelengths inversely related to the amplitude of RRS. On average and for the considered data sets, SeaWiFS RRS tend to be slightly higher than MODIS RRS, which in turn appear higher than MERIS RRS. Biases between mission-specific RRS may exhibit a seasonal dependence, particularly in the subtropical belt.