917 resultados para 3D Modeling of Glioma Tumor
Resumo:
Recently, due to the increasing total construction and transportation cost and difficulties associated with handling massive structural components or assemblies, there has been increasing financial pressure to reduce structural weight. Furthermore, advances in material technology coupled with continuing advances in design tools and techniques have encouraged engineers to vary and combine materials, offering new opportunities to reduce the weight of mechanical structures. These new lower mass systems, however, are more susceptible to inherent imbalances, a weakness that can result in higher shock and harmonic resonances which leads to poor structural dynamic performances. The objective of this thesis is the modeling of layered sheet steel elements, to accurately predict dynamic performance. During the development of the layered sheet steel model, the numerical modeling approach, the Finite Element Analysis and the Experimental Modal Analysis are applied in building a modal model of the layered sheet steel elements. Furthermore, in view of getting a better understanding of the dynamic behavior of layered sheet steel, several binding methods have been studied to understand and demonstrate how a binding method affects the dynamic behavior of layered sheet steel elements when compared to single homogeneous steel plate. Based on the developed layered sheet steel model, the dynamic behavior of a lightweight wheel structure to be used as the structure for the stator of an outer rotor Direct-Drive Permanent Magnet Synchronous Generator designed for high-power wind turbines is studied.
Resumo:
The application of computational fluid dynamics (CFD) and finite element analysis (FEA) has been growing rapidly in the various fields of science and technology. One of the areas of interest is in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. Despite the success rate of the stenting procedure, it is often associated with the restenosis (re-narrowing of the artery) process. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents, type of stent expansion, expansion pressure, morphology and composition of vessel wall influence the restenosis process. Therefore, the role of computational studies is crucial in the investigation and optimisation of the factors that influence post-stenting complications. This thesis focuses on the stent-vessel wall interactions followed by the blood flow in the post-stenting stage of stenosed human coronary artery. Hemodynamic and mechanical stresses were analysed in three separate stent-plaque-artery models. Plaque was modeled as a multi-layer (fibrous cap (FC), necrotic core (NC), and fibrosis (F)) and the arterial wall as a single layer domain. CFD/FEA simulations were performed using commercial software packages in several models mimicking the various stages and morphologies of atherosclerosis. The tissue prolapse (TP) of stented vessel wall, the distribution of von Mises stress (VMS) inside various layers of vessel wall, and the wall shear stress (WSS) along the luminal surface of the deformed vessel wall were measured and evaluated. The results revealed the role of the stenosis size, thickness of each layer of atherosclerotic wall, thickness of stent strut, pressure applied for stenosis expansion, and the flow condition in the distribution of stresses. The thicknesses of FC, and NC and the total thickness of plaque are critical in controlling the stresses inside the tissue. A small change in morphology of artery wall can significantly affect the distribution of stresses. In particular, FC is the most sensitive layer to TP and stresses, which could determine plaque’s vulnerability to rupture. The WSS is highly influenced by the deflection of artery, which in turn is dependent on the structural composition of arterial wall layers. Together with the stenosis size, their roles could play a decisive role in controlling the low values of WSS (<0.5 Pa) prone to restenosis. Moreover, the time dependent flow altered the percentage of luminal area with WSS values less than 0.5 Pa at different time instants. The non- Newtonian viscosity model of the blood properties significantly affects the prediction of WSS magnitude. The outcomes of this investigation will help to better understand the roles of the individual layers of atherosclerotic vessels and their risk to provoke restenosis at the post-stenting stage. As a consequence, the implementation of such an approach to assess the post-stented stresses will assist the engineers and clinicians in optimizing the stenting techniques to minimize the occurrence of restenosis.
Resumo:
Fluid particle breakup and coalescence are important phenomena in a number of industrial flow systems. This study deals with a gas-liquid bubbly flow in one wastewater cleaning application. Three-dimensional geometric model of a dispersion water system was created in ANSYS CFD meshing software. Then, numerical study of the system was carried out by means of unsteady simulations performed in ANSYS FLUENT CFD software. Single-phase water flow case was setup to calculate the entire flow field using the RNG k-epsilon turbulence model based on the Reynolds-averaged Navier-Stokes (RANS) equations. Bubbly flow case was based on a computational fluid dynamics - population balance model (CFD-PBM) coupled approach. Bubble breakup and coalescence were considered to determine the evolution of the bubble size distribution. Obtained results are considered as steps toward optimization of the cleaning process and will be analyzed in order to make the process more efficient.
Resumo:
In this Master Thesis the characteristics of the chosen fractal microstrip antennas are investigated. For modeling has been used the structure of the square Serpinsky fractal curves. During the elaboration of this Master thesis the following steps were undertaken: 1) calculation and simulation of square microstrip antennа, 2) optimizing for obtaining the required characteristics on the frequency 2.5 GHz, 3) simulation and calculation of the second and third iteration of the Serpinsky fractal curves, 4) radiation patterns and intensity distribution of these antennas. In this Master’s Thesis the search for the optimal position of the port and fractal elements was conducted. These structures can be used in perspective for creation of antennas working at the same time in different frequency range.
Resumo:
Electro-rotation can be used to determine the dielectric properties of cells, as well as to observe dynamic changes in both dielectric and morphological properties. Suspended biological cells and particles respond to alternating-field polarization by moving, deforming or rotating. While in linearly polarized alternating fields the particles are oriented along their axis of highest polarizability, in circularly polarized fields the axis of lowest polarizability aligns perpendicular to the plane of field rotation. Ellipsoidal models for cells are frequently applied, which include, beside sphere-shaped cells, also the limiting cases of rods and disks. Human erythrocyte cells, due to their particular shape, hardly resemble an ellipsoid. The additional effect of rouleaux formation with different numbers of aggregations suggests a model of circular cylinders of variable length. In the present study, the induced dipole moment of short cylinders was calculated and applied to rouleaux of human erythrocytes, which move freely in a suspending conductive medium under the effect of a rotating external field. Electro-rotation torque spectra are calculated for such aggregations of different length. Both the maximum rotation speeds and the peak frequencies of the torque are found to depend clearly on the size of the rouleaux. While the rotation speed grows with rouleaux length, the field frequency nup is lowest for the largest cell aggregations where the torque shows a maximum.
Resumo:
Serine-proteases are involved in vital processes in virtually all species. They are important targets for researchers studying the relationships between protein structure and activity, for the rational design of new pharmaceuticals. Trypsin was used as a model to assess a possible differential contribution of hydration water to the binding of two synthetic inhibitors. Thermodynamic parameters for the association of bovine ß-trypsin (homogeneous material, observed 23,294.4 ± 0.2 Da, theoretical 23,292.5 Da) with the inhibitors benzamidine and berenil at pH 8.0, 25ºC and with 25 mM CaCl2, were determined using isothermal titration calorimetry and the osmotic stress method. The association constant for berenil was about 12 times higher compared to the one for benzamidine (binding constants are K = 596,599 ± 25,057 and 49,513 ± 2,732 M-1, respectively; the number of binding sites is the same for both ligands, N = 0.99 ± 0.05). Apparently the driving force responsible for this large difference of affinity is not due to hydrophobic interactions because the variation in heat capacity (DCp), a characteristic signature of these interactions, was similar in both systems tested (-464.7 ± 23.9 and -477.1 ± 86.8 J K-1 mol-1 for berenil and benzamidine, respectively). The results also indicated that the enzyme has a net gain of about 21 water molecules regardless of the inhibitor tested. It was shown that the difference in affinity could be due to a larger number of interactions between berenil and the enzyme based on computational modeling. The data support the view that pharmaceuticals derived from benzamidine that enable hydrogen bond formation outside the catalytic binding pocket of ß-trypsin may result in more effective inhibitors.
Resumo:
The reduction of greenhouse gas emissions in the European Union promotes the combustion of biomass rather than fossil fuels in energy production. Circulating fluidized bed (CFB) combustion offers a simple, flexible and efficient way to utilize untreated biomass in a large scale. CFB furnaces are modeled in order to understand their operation better and to help in the design of new furnaces. Therefore, physically accurate models are needed to describe the heavily coupled multiphase flow, reactions and heat transfer inside the furnace. This thesis presents a new model for the fuel flow inside the CFB furnace, which acknowledges the physical properties of the fuel and the multiphase flow phenomena inside the furnace. This model is applied with special interest in the firing of untreated biomass. An experimental method is utilized to characterize gas-fuel drag force relations. This characteristic drag force approach is developed into a gas-fuel drag force model suitable for irregular, non-spherical biomass particles and applied together with the new fuel flow model in the modeling of a large-scale CFB furnace. The model results are physically valid and achieve very good correspondence with the measurement results from large-scale CFB furnace firing biomass. With the methods and models presented in this work, the fuel flow field inside a circulating fluidized bed furnace can be modeled with better accuracy and more efficiently than in previous studies with a three-dimensional holistic model frame.
Resumo:
High resolution proton nuclear magnetic resonance spectroscopy (¹H MRS) can be used to detect biochemical changes in vitro caused by distinct pathologies. It can reveal distinct metabolic profiles of brain tumors although the accurate analysis and classification of different spectra remains a challenge. In this study, the pattern recognition method partial least squares discriminant analysis (PLS-DA) was used to classify 11.7 T ¹H MRS spectra of brain tissue extracts from patients with brain tumors into four classes (high-grade neuroglial, low-grade neuroglial, non-neuroglial, and metastasis) and a group of control brain tissue. PLS-DA revealed 9 metabolites as the most important in group differentiation: γ-aminobutyric acid, acetoacetate, alanine, creatine, glutamate/glutamine, glycine, myo-inositol, N-acetylaspartate, and choline compounds. Leave-one-out cross-validation showed that PLS-DA was efficient in group characterization. The metabolic patterns detected can be explained on the basis of previous multimodal studies of tumor metabolism and are consistent with neoplastic cell abnormalities possibly related to high turnover, resistance to apoptosis, osmotic stress and tumor tendency to use alternative energetic pathways such as glycolysis and ketogenesis.
Resumo:
Pituitary tumor-transforming gene-1 (PTTG1) is a proto-oncogene that promotes tumorigenesis and metastasis in numerous cell types and is overexpressed in a variety of human tumors. We have demonstrated that PTTG1 expression was up-regulated in both human prostate cancer specimens and prostate cancer cell lines. For a more direct assessment of the function of PTTG1 in prostate tumorigenesis, RNAi-mediated knockdown was used to selectively decrease PTTG1 expression in PC3 human prostate tumor cells. After three weeks of selection, colonies stably transfected with PTTG1-targeted RNAi (the knockdown PC3 cell line) or empty vector (the control PC3 cell line) were selected and expanded to investigate the role of PTTG1 expression in PC3 cell growth and invasion. Cell proliferation rate was significantly slower (28%) in the PTTG1 knockdown line after 6 days of growth as indicated by an MTT cell viability assay (P < 0.05). Similarly, a soft agar colony formation assay revealed significantly fewer (66.7%) PTTG1 knockdown PC3 cell colonies than control colonies after three weeks of growth. In addition, PTTG1 knockdown resulted in cell cycle arrest at G1 as indicated by fluorescence-activated cell sorting. The PTTG1 knockdown PC3 cell line also exhibited significantly reduced migration through Matrigel in a transwell assay of invasive potential, and down-regulation of PTTG1 could lead to increased sensitivity of these prostate cancer cells to a commonly used anticancer drug, taxol. Thus, PTTG1 expression is crucial for PC3 cell proliferation and invasion, and could be a promising new target for prostate cancer therapy.
Resumo:
Poultry carcasses have to be chilled to reduce the central breast temperatures from approximately 40 to 4 °C, which is crucial to ensure safe products. This work investigated the cooling of poultry carcasses by water immersion. Poultry carcasses were taken directly from an industrial processing plant and cooled in a pilot chiller, which was built to investigate the influence of the method and the water stirring intensity on the carcasses cooling. A simplified empiric mathematical model was used to represent the experimental results. These results indicated clearly that the understanding and quantification of heat transfer between the carcass and the cooling water is crucial to improve processes and equipment. The proposed mathematical model is a useful tool to represent the dynamics of carcasses cooling, and it can be used to compare different chiller operational conditions in industrial plants. Therefore, this study reports data and a simple mathematical tool to handle an industrial problem with little information available in the literature.
Resumo:
The objective of this work was to determine and model the infrared dehydration curves of apple slices - Fuji and Gala varieties. The slices were dehydrated until constant mass, in a prototype dryer with infrared heating source. The applied temperatures ranged from 50 to 100 °C. Due to the physical characteristics of the product, the dehydration curve was divided in two periods, constant and falling, separated by the critical moisture content. A linear model was used to describe the constant dehydration period. Empirical models traditionally used to model the drying behavior of agricultural products were fitted to the experimental data of the falling dehydration period. Critical moisture contents of 2.811 and 3.103 kgw kgs-1 were observed for the Fuji and Gala varieties, respectively. Based on the results, it was concluded that the constant dehydration rates presented a direct relationship with the temperature; thus, it was possible to fit a model that describes the moisture content variation in function of time and temperature. Among the tested models, which describe the falling dehydration period, the model proposed by Midilli presented the best fit for all studied conditions.
Resumo:
A mathematical model to predict microbial growth in milk was developed and analyzed. The model consists of a system of two differential equations of first order. The equations are based on physical hypotheses of population growth. The model was applied to five different sets of data of microbial growth in dairy products selected from Combase, which is the most important database in the area with thousands of datasets from around the world, and the results showed a good fit. In addition, the model provides equations for the evaluation of the maximum specific growth rate and the duration of the lag phase which may provide useful information about microbial growth.
Resumo:
Celery (Apium graveolens L. var. secalinum Alef) leaves with 50±0.07 g weight and 91.75±0.15% humidity (~11.21 db) were dried using 8 different microwave power densities ranging between 1.8-20 W g-1, until the humidity fell down to 8.95±0.23% (~0.1 db). Microwave drying processes were completed between 5.5 and 77 min depending on the microwave power densities. In this study, measured values were compared with predicted values obtained from twenty thin layer drying theoretical, semi-empirical and empirical equations with a new thin layer drying equation. Within applied microwave power density; models whose coefficient and correlation (R²) values are highest were chosen as the best models. Weibull distribution model gave the most suitable predictions at all power density. At increasing microwave power densities, the effective moisture diffusivity values ranged from 1.595 10-10 to 6.377 10-12 m2 s-1. The activation energy was calculated using an exponential expression based on Arrhenius equation. The linear relationship between the drying rate constant and effective moisture diffusivity gave the best fit.
Resumo:
Tesis (Doctor en Ciencias con Orientación en Procesos Sustentables) UANL, 2013.