989 resultados para 3D CAD software for clothing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relatório de estágio apresentada para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Sistemas de Informação Organizacionais

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Underwater video transects have become a common tool for quantitative analysis of the seafloor. However a major difficulty remains in the accurate determination of the area surveyed as underwater navigation can be unreliable and image scaling does not always compensate for distortions due to perspective and topography. Depending on the camera set-up and available instruments, different methods of surface measurement are applied, which make it difficult to compare data obtained by different vehicles. 3-D modelling of the seafloor based on 2-D video data and a reference scale can be used to compute subtransect dimensions. Focussing on the length of the subtransect, the data obtained from 3-D models created with the software PhotoModeler Scanner are compared with those determined from underwater acoustic positioning (ultra short baseline, USBL) and bottom tracking (Doppler velocity log, DVL). 3-D model building and scaling was successfully conducted on all three tested set-ups and the distortion of the reference scales due to substrate roughness was identified as the main source of imprecision. Acoustic positioning was generally inaccurate and bottom tracking unreliable on rough terrain. Subtransect lengths assessed with PhotoModeler were on average 20% longer than those derived from acoustic positioning due to the higher spatial resolution and the inclusion of slope. On a high relief wall bottom tracking and 3-D modelling yielded similar results. At present, 3-D modelling is the most powerful, albeit the most time-consuming, method for accurate determination of video subtransect dimensions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper defines the 3D reconstruction problem as the process of reconstructing a 3D scene from numerous 2D visual images of that scene. It is well known that this problem is ill-posed, and numerous constraints and assumptions are used in 3D reconstruction algorithms in order to reduce the solution space. Unfortunately, most constraints only work in a certain range of situations and often constraints are built into the most fundamental methods (e.g. Area Based Matching assumes that all the pixels in the window belong to the same object). This paper presents a novel formulation of the 3D reconstruction problem, using a voxel framework and first order logic equations, which does not contain any additional constraints or assumptions. Solving this formulation for a set of input images gives all the possible solutions for that set, rather than picking a solution that is deemed most likely. Using this formulation, this paper studies the problem of uniqueness in 3D reconstruction and how the solution space changes for different configurations of input images. It is found that it is not possible to guarantee a unique solution, no matter how many images are taken of the scene, their orientation or even how much color variation is in the scene itself. Results of using the formulation to reconstruct a few small voxel spaces are also presented. They show that the number of solutions is extremely large for even very small voxel spaces (5 x 5 voxel space gives 10 to 10(7) solutions). This shows the need for constraints to reduce the solution space to a reasonable size. Finally, it is noted that because of the discrete nature of the formulation, the solution space size can be easily calculated, making the formulation a useful tool to numerically evaluate the usefulness of any constraints that are added.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finding single pair shortest paths on surface is a fundamental problem in various domains, like Geographic Information Systems (GIS) 3D applications, robotic path planning system, and surface nearest neighbor query in spatial database, etc. Currently, to solve the problem, existing algorithms must traverse the entire polyhedral surface. With the rapid advance in areas like Global Positioning System (CPS), Computer Aided Design (CAD) systems and laser range scanner, surface models axe becoming more and more complex. It is not uncommon that a surface model contains millions of polygons. The single pair shortest path problem is getting harder and harder to solve. Based on the observation that the single pair shortest path is in the locality, we propose in this paper efficient methods by excluding part of the surface model without considering them in the search process. Three novel expansion-based algorithms are proposed, namely, Naive algorithm, Rectangle-based Algorithm and Ellipse-based Algorithm. Each algorithm uses a two-step approach to find the shortest path. (1) compute an initial local path. (2) use the value of this initial path to select a search region, in which the global shortest path exists. The search process terminates once the global optimum criteria are satisfied. By reducing the searching region, the performance is improved dramatically in most cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue Doppler (TD) assessment of dysynchrony (DYS) is established in evaluation for bi-ventricular pacing. Time to regional minimal volume by real-time 3D echo (3D) has been applied to DYS. 3D offers simultaneous assessment of all segments and may limit errors in localization of maximum delay due to off-axis images.We compared TD and 3D for assessment of DYS. 27 patients with ischaemic cardiomyopathy (aged 60±11 years, 85% male) underwent TD with generation of regional velocity curves. The interval between QRS onset and maximal systolic velocity (TTV) was measured in 6 basal and 6 mid-cavity segments. Onthe same day,3Dwas performed and data analysed offline with Q-Lab software (Philips, Andover, MA). Using 12 analogous regional time-volume curves time to minimal volume (T3D)was calculated. The standard deviation (S.D.) between segments in TTV and T3D was calculated as a measure ofDYS. In 7 patients itwas not possible to measureT3D due to poor images. In the remaining 20, LV diastolic volume, systolic volume and EF were 128±35 ml, 68±23 ml and 46±13%, respectively. Mean TTV was less than mean T3D (150±33ms versus 348±54 ms; p < 0.01). The intrapatient range was 20–210ms for TTV and 0–410ms for T3D. Of 9 patients (45%) with significantDYS (S.D. TTV > 32 ms), S.D. T3D was 69±37ms compared to 48±34ms in those without DYS (p = ns). In DYS patients there was concordance of the most delayed segment in 4 (44%) cases.Therefore, different techniques for assessing DYS are not directly comparable. Specific cut-offs for DYS are needed for each technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Creativity is increasingly recognised as an essential component of engineering design. This paper describes an exploratory study into the nature and importance of creativity in engineering design problem solving in relation to the possible impact of software design tools. The first stage of the study involved an empirical investigation in the form of a case study of the use of standard CAD tool sets and the development of a systems engineering software support tool. It was found that there were several ways in which CAD influenced the creative process, including enhancing visualisation and communication, premature fixation, circumscribed thinking and bounded ideation. The tool development experience uncovered the difficulty in supporting creative processes from the developer's perspective. The issues were the necessity of making assumptions, achieving a balance between structure and flexibility, and the pitfalls of satisfying user wants and needs. The second part of the study involved the development of a model of the creative problem solving process in engineering design. This provided a possible explanation for why purpose designed engineering software tools might encourage an analytical problem solving approach and discourage a more creative approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer modeling is a perspective method for optimal design of prosthesis and orthoses. The study is oriented to develop modular ankle foot orthosis (MAFO) to assist the very frequently observed gait abnormalities relating the human ankle-foot complex using CAD modeling. The main goal is to assist the ankle- foot flexors and extensors during the gait cycle (stance and swing) using torsion spring. Utilizing 3D modeling and animating open source software (Blender 3D), it is possible to generate artificially different kind of normal and abnormal gaits and investigate and adjust the assistive modular spring driven ankle foot orthosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work consists of the conception, developing and implementation of a Computational Routine CAE which has algorithms suitable for the tension and deformation analysis. The system was integrated to an academic software named as OrtoCAD. The expansion algorithms for the interface CAE genereated by this work were developed in FORTRAN with the objective of increase the applications of two former works of PPGEM-UFRN: project and fabrication of a Electromechanincal reader and Software OrtoCAD. The software OrtoCAD is an interface that, orinally, includes the visualization of prothetic cartridges from the data obtained from a electromechanical reader (LEM). The LEM is basically a tridimensional scanner based on reverse engineering. First, the geometry of a residual limb (i.e., the remaining part of an amputee leg wherein the prothesis is fixed) is obtained from the data generated by LEM by the use of Reverse Engineering concepts. The proposed core FEA uses the Shell's Theory where a 2D surface is generated from a 3D piece form OrtoCAD. The shell's analysis program uses the well-known Finite Elements Method to describe the geometry and the behavior of the material. The program is based square-based Lagragean elements of nine nodes and displacement field of higher order to a better description of the tension field in the thickness. As a result, the new FEA routine provide excellent advantages by providing new features to OrtoCAD: independency of high cost commercial softwares; new routines were added to the OrtoCAD library for more realistic problems by using criteria of fault engineering of composites materials; enhanced the performance of the FEA analysis by using a specific grid element for a higher number of nodes; and finally, it has the advantage of open-source project and offering customized intrinsic versatility and wide possibilities of editing and/or optimization that may be necessary in the future

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3D Reconstruction is the process used to obtain a detailed graphical model in three dimensions that represents some real objectified scene. This process uses sequences of images taken from the scene, so it can automatically extract the information about the depth of feature points. These points are then highlighted using some computational technique on the images that compose the used dataset. Using SURF feature points this work propose a model for obtaining depth information of feature points detected by the system. At the ending, the proposed system extract three important information from the images dataset: the 3D position for feature points; relative rotation and translation matrices between images; the realtion between the baseline for adjacent images and the 3D point accuracy error found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Questa tesi si occupa dell’estensione di un framework software finalizzato all'individuazione e al tracciamento di persone in una scena ripresa da telecamera stereoscopica. In primo luogo è rimossa la necessità di una calibrazione manuale offline del sistema sfruttando algoritmi che consentono di individuare, a partire da un fotogramma acquisito dalla camera, il piano su cui i soggetti tracciati si muovono. Inoltre, è introdotto un modulo software basato su deep learning con lo scopo di migliorare la precisione del tracciamento. Questo componente, che è in grado di individuare le teste presenti in un fotogramma, consente ridurre i dati analizzati al solo intorno della posizione effettiva di una persona, escludendo oggetti che l’algoritmo di tracciamento sarebbe portato a individuare come persone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The past few decades have brought many changes to the dental practice and the technology has become ready available. The result of a satisfactory rehabilitation treatment basically depends on the balance between biological and mechanical factors. The marginal adaptation of crowns and prosthetic structures is vital factor for long-term success. The development of CAD / CAM technology in the manufacture of dental prostheses revolutionized dentistry, this technology is capable of generating a virtual model from the direct digital scanning from the mouth, casts or impressions. It allows the planning and design of the structure in a computered software. The virtual projects are obtained with high precision and a significant reduction in clinical and laboratory time. Thus, the present study (Chapters 1, 2 and 3) computed microtomography was used to evaluate, different materials, different CAD/CAM systems, different ways of obtaining virtual model (with direct or indirect scanning), and in addition, also aims to evaluate the influence of cementing agent in the final adaptation of crowns and copings obtained by CAD / CAM. Furthermore, this study (Chapter 4, 5 and 6) also aims to evaluate significant differences in vertical and horizontal misfits in abutment-free frameworks on external hexagon implants (HE) using full castable UCLAs, castable UCLAs with cobalt-chromium pre-machined bases and obtained by CAD / CAM with CoCr or Zirconia by different scanning and milling systems. For this, the scanning electron microscopy and interferometry were used. It was concluded that the CAD / CAM technology is capable to produce restorations, copings and screw-retained implant-supported frameworks in different materials and systems offering satisfactory results of marginal accuracy, with significative reduction in clinical and laboratory time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En la actualidad, los videojuegos han ido adquiriendo cada vez más protagonismo en el sector de la tecnología, considerándose un arte para muchos y más que un entretenimiento para otros. Ha supuesto una de las principales fuentes de ingresos en las últimos años superando incluso al cine. A día de hoy, hay muchas herramientas que permiten y facilitan su implementación. Concretamente encontramos programas software que ejercen de motores de desarrollo de videojuegos, como por ejemplo Unreal Engine o Unity3D, que brindan todo lo necesario para llevar a cabo esos juegos que tanto nos gustan. Existen innumerables géneros, como los de aventura gráfica, que cobran más importancia porque intentan darle al usuario un mayor control intentando, cada vez más, simular la realidad. Por esta razón, surge el concepto de generación de historias en tiempo real, con el fin de diferenciarse de aquellas que están predefinidas y dar al usuario la posibilidad de crear una infinidad de historias que dependerán de los movimientos y decisiones que tome a lo largo del juego. Este proyecto se centra en implementar esta idea, partiendo de un entorno gráfico que es el edificio de nuestra facultad. Sobre él desarrollaremos un sistema que permita al usuario moverse libremente por todo el edificio, generando distintas historias en función de los caminos que tome dentro de él. Existe la figura del narrador que le guiará y le aconsejará para completar los objetivos que vayan apareciendo. El usuario puede optar por hacerle caso y seguir sus indicaciones o ignorarlo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As complex radiotherapy techniques become more readily-practiced, comprehensive 3D dosimetry is a growing necessity for advanced quality assurance. However, clinical implementation has been impeded by a wide variety of factors, including the expense of dedicated optical dosimeter readout tools, high operational costs, and the overall difficulty of use. To address these issues, a novel dry-tank optical CT scanner was designed for PRESAGE 3D dosimeter readout, relying on 3D printed components and omitting costly parts from preceding optical scanners. This work details the design, prototyping, and basic commissioning of the Duke Integrated-lens Optical Scanner (DIOS).

The convex scanning geometry was designed in ScanSim, an in-house Monte Carlo optical ray-tracing simulation. ScanSim parameters were used to build a 3D rendering of a convex ‘solid tank’ for optical-CT, which is capable of collimating a point light source into telecentric geometry without significant quantities of refractive-index matched fluid. The model was 3D printed, processed, and converted into a negative mold via rubber casting to produce a transparent polyurethane scanning tank. The DIOS was assembled with the solid tank, a 3W red LED light source, a computer-controlled rotation stage, and a 12-bit CCD camera. Initial optical phantom studies show negligible spatial inaccuracies in 2D projection images and 3D tomographic reconstructions. A PRESAGE 3D dose measurement for a 4-field box treatment plan from Eclipse shows 95% of voxels passing gamma analysis at 3%/3mm criteria. Gamma analysis between tomographic images of the same dosimeter in the DIOS and DLOS systems show 93.1% agreement at 5%/1mm criteria. From this initial study, the DIOS has demonstrated promise as an economically-viable optical-CT scanner. However, further improvements will be necessary to fully develop this system into an accurate and reliable tool for advanced QA.

Pre-clinical animal studies are used as a conventional means of translational research, as a midpoint between in-vitro cell studies and clinical implementation. However, modern small animal radiotherapy platforms are primitive in comparison with conventional linear accelerators. This work also investigates a series of 3D printed tools to expand the treatment capabilities of the X-RAD 225Cx orthovoltage irradiator, and applies them to a feasibility study of hippocampal avoidance in rodent whole-brain radiotherapy.

As an alternative material to lead, a novel 3D-printable tungsten-composite ABS plastic, GMASS, was tested to create precisely-shaped blocks. Film studies show virtually all primary radiation at 225 kVp can be attenuated by GMASS blocks of 0.5cm thickness. A state-of-the-art software, BlockGen, was used to create custom hippocampus-shaped blocks from medical image data, for any possible axial treatment field arrangement. A custom 3D printed bite block was developed to immobilize and position a supine rat for optimal hippocampal conformity. An immobilized rat CT with digitally-inserted blocks was imported into the SmART-Plan Monte-Carlo simulation software to determine the optimal beam arrangement. Protocols with 4 and 7 equally-spaced fields were considered as viable treatment options, featuring improved hippocampal conformity and whole-brain coverage when compared to prior lateral-opposed protocols. Custom rodent-morphic PRESAGE dosimeters were developed to accurately reflect these treatment scenarios, and a 3D dosimetry study was performed to confirm the SmART-Plan simulations. Measured doses indicate significant hippocampal sparing and moderate whole-brain coverage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper examines the integration of a tolerance design process within the Computer-Aided Design (CAD) environment having identified the potential to create an intelligent Digital Mock-Up [1]. The tolerancing process is complex in nature and as such reliance on Computer-Aided Tolerancing (CAT) software and domain experts can create a disconnect between the design and manufacturing disciplines It is necessary to implement the tolerance design procedure at the earliest opportunity to integrate both disciplines and to reduce workload in tolerance analysis and allocation at critical stages in product development when production is imminent.
The work seeks to develop a methodology that will allow for a preliminary tolerance allocation procedure within CAD. An approach to tolerance allocation based on sensitivity analysis is implemented on a simple assembly to review its contribution to an intelligent DMU. The procedure is developed using Python scripting for CATIA V5, with analysis results aligning with those in literature. A review of its implementation and requirements is presented.