1000 resultados para 309999 Agricultural, Veterinary and Environmental Sciences not elsewhere classified
Resumo:
This study used genome-wide linkage analysis to detect Quantitative Trait Loci (QTLs) implicated in variation in general academic achievement as measured by the Queensland Core Skills Test (QCST) (Queensland Studies Authority, 2004). Data from 210 families were analysed. While no empirically derived significant or suggestive peaks for general academic achievement were indicated a peak on chromosome 2 was observed in a region where Posthuma et al. (2005) reported significant linkage for Performance IQ (PIQ) and suggestive linkage for Full Scale IQ (FSIQ), and Luciano et al. (this issue) observed significant linkage for PIQ and word reading. A peak on chromosome 18 was also observed approximately 20 cM removed from a region recently implicated in reading achievement. In addition, on chromosomes 2 and 18 peaks for a number of specific academic skills, two of which were suggestive, coincided with the general academic achievement peaks. The findings suggest that variation in general academic achievement is influenced by genes on chromosome 2 which have broad influence on a variety of cognitive abilities.
Resumo:
Two east - west transects were established in southern Queensland to quantify rainfall inputs of chloride and associated ions. Electrical conductivity, pH, and major and minor ions were measured at 9 sites within the Queensland Murray - Darling Basin and 1 site to the east. Variability at some sites was high, possibly a function of the sample collection method. Ionic concentrations decreased with distance inland, a trend similar to that observed elsewhere in Australia, although values closer to the coast were higher than observed in southern and western Australia. Equations to predict both annual average rainfall chloride mass deposition and total salt deposition were derived.
Resumo:
Complement factor 5a (C5a) is formed upon complement system activation in response to infection, injury or disease. Whilst C5a is a potent mediator of immune and inflammatory processes, excessive production or inadequate regulation of C5a has been implicated in the pathogenesis of numerous immuno-inflammatory diseases, predominantly through experimental studies utilising animal models of disease. Both acute and chronic conditions may benefit from C5a inhibition, including rheumatoid arthritis, inflammatory bowel disease, asthma, psoriasis, haemorrhagic shock and neurodegenerative conditions. The potentially broad clinical application for treatments that inhibit the activity of C5a at C5a receptors and the large global market for anti-inflammatory therapeutics have made C5a and the C5a receptor attractive targets for academic and commercial drug development programmes. in the past 5 years, interest in C5a as a drug target has grown substantially, and this activity has resulted in a collection of patents and scientific papers reporting novel C5a and C5a receptor inhibitors and antagonists, and generated a secondary stream of patent applications broadly claiming the use of C5/C5a inhibitors as a method of treating various immune and inflammatory conditions. This paper will review the physiology and pathophysiology of C5a and discuss the development of C5a and C5a receptor inhibitors in light of the recent scientific and patent literature.