826 resultados para 2D barcode based authentication scheme
Resumo:
Lyhyen kantaman radiotekniikoiden hyödyntäminen mahdollistaa uudenlaisten paikallisten palveluiden käytön ja vanhojen palveluiden kehittämisen. Kulunvalvonta on päivittäisenä palveluna valittu työn esimerkkisovellukseksi. Useita tunnistus- ja valtuutustapoja tutkitaan, ja julkisen avaimen infrastruktuuri on esitellään tarkemmin. Langattomat tekniikat Bluetooth, Zigbee, RFID ja IrDA esitellän yleisellä tasolla langattomat tekniikat –luvussa. Bluetooth-tekniikan rakennetta, mukaan lukien sen tietoturva-arkkitehtuuria, tutkitaan tarkemmin. Bluetooth-tekniikkaa käytetään työssä suunnitellun langattoman kulunvalvontajärjestelmän tietojen siirtoon. Kannettava päätelaite toimii käyttäjän henkilökohtaisena luotettuna laitteena, jota voi käyttää avaimena. Käyttäjän tunnistaminen ja valtuuttaminen perustuu julkisen avaimen infrastruktuuriin. Ylläpidon allekirjoittamat varmenteet sisältävät käyttäjän julkisen avaimen lisäksi tietoa hänestä ja hänen oikeuksistaan. Käyttäjän tunnistaminen kulunvalvontapisteissä tehdään julkisen ja salaisen avaimen käyttöön perustuvalla haaste-vastaus-menetelmällä. Lyhyesti, järjestelmässä käytetään Bluetooth-päätelaitteita langattomina avaimina.
Resumo:
L'imagerie par résonance magnétique (IRM) peut fournir aux cardiologues des informations diagnostiques importantes sur l'état de la maladie de l'artère coronarienne dans les patients. Le défi majeur pour l'IRM cardiaque est de gérer toutes les sources de mouvement qui peuvent affecter la qualité des images en réduisant l'information diagnostique. Cette thèse a donc comme but de développer des nouvelles techniques d'acquisitions des images IRM, en changeant les techniques de compensation du mouvement, pour en augmenter l'efficacité, la flexibilité, la robustesse et pour obtenir plus d'information sur le tissu et plus d'information temporelle. Les techniques proposées favorisent donc l'avancement de l'imagerie des coronaires dans une direction plus maniable et multi-usage qui peut facilement être transférée dans l'environnement clinique. La première partie de la thèse s'est concentrée sur l'étude du mouvement des artères coronariennes sur des patients en utilisant la techniques d'imagerie standard (rayons x), pour mesurer la précision avec laquelle les artères coronariennes retournent dans la même position battement après battement (repositionnement des coronaires). Nous avons découvert qu'il y a des intervalles dans le cycle cardiaque, tôt dans la systole et à moitié de la diastole, où le repositionnement des coronaires est au minimum. En réponse nous avons développé une nouvelle séquence d'acquisition (T2-post) capable d'acquérir les données aussi tôt dans la systole. Cette séquence a été testée sur des volontaires sains et on a pu constater que la qualité de visualisation des artère coronariennes est égale à celle obtenue avec les techniques standard. De plus, le rapport signal sur bruit fourni par la séquence d'acquisition proposée est supérieur à celui obtenu avec les techniques d'imagerie standard. La deuxième partie de la thèse a exploré un paradigme d'acquisition des images cardiaques complètement nouveau pour l'imagerie du coeur entier. La technique proposée dans ce travail acquiert les données sans arrêt (free-running) au lieu d'être synchronisée avec le mouvement cardiaque. De cette façon, l'efficacité de la séquence d'acquisition est augmentée de manière significative et les images produites représentent le coeur entier dans toutes les phases cardiaques (quatre dimensions, 4D). Par ailleurs, l'auto-navigation de la respiration permet d'effectuer cette acquisition en respiration libre. Cette technologie rend possible de visualiser et évaluer l'anatomie du coeur et de ses vaisseaux ainsi que la fonction cardiaque en quatre dimensions et avec une très haute résolution spatiale et temporelle, sans la nécessité d'injecter un moyen de contraste. Le pas essentiel qui a permis le développement de cette technique est l'utilisation d'une trajectoire d'acquisition radiale 3D basée sur l'angle d'or. Avec cette trajectoire, il est possible d'acquérir continûment les données d'espace k, puis de réordonner les données et choisir les paramètres temporel des images 4D a posteriori. L'acquisition 4D a été aussi couplée avec un algorithme de reconstructions itératif (compressed sensing) qui permet d'augmenter la résolution temporelle tout en augmentant la qualité des images. Grâce aux images 4D, il est possible maintenant de visualiser les artères coronariennes entières dans chaque phase du cycle cardiaque et, avec les mêmes données, de visualiser et mesurer la fonction cardiaque. La qualité des artères coronariennes dans les images 4D est la même que dans les images obtenues avec une acquisition 3D standard, acquise en diastole Par ailleurs, les valeurs de fonction cardiaque mesurées au moyen des images 4D concorde avec les valeurs obtenues avec les images 2D standard. Finalement, dans la dernière partie de la thèse une technique d'acquisition a temps d'écho ultra-court (UTE) a été développée pour la visualisation in vivo des calcifications des artères coronariennes. Des études récentes ont démontré que les acquisitions UTE permettent de visualiser les calcifications dans des plaques athérosclérotiques ex vivo. Cepandent le mouvement du coeur a entravé jusqu'à maintenant l'utilisation des techniques UTE in vivo. Pour résoudre ce problème nous avons développé une séquence d'acquisition UTE avec trajectoire radiale 3D et l'avons testée sur des volontaires. La technique proposée utilise une auto-navigation 3D pour corriger le mouvement respiratoire et est synchronisée avec l'ECG. Trois échos sont acquis pour extraire le signal de la calcification avec des composants au T2 très court tout en permettant de séparer le signal de la graisse depuis le signal de l'eau. Les résultats sont encore préliminaires mais on peut affirmer que la technique développé peut potentiellement montrer les calcifications des artères coronariennes in vivo. En conclusion, ce travail de thèse présente trois nouvelles techniques pour l'IRM du coeur entier capables d'améliorer la visualisation et la caractérisation de la maladie athérosclérotique des coronaires. Ces techniques fournissent des informations anatomiques et fonctionnelles en quatre dimensions et des informations sur la composition du tissu auparavant indisponibles. CORONARY artery magnetic resonance imaging (MRI) has the potential to provide the cardiologist with relevant diagnostic information relative to coronary artery disease of patients. The major challenge of cardiac MRI, though, is dealing with all sources of motions that can corrupt the images affecting the diagnostic information provided. The current thesis, thus, focused on the development of new MRI techniques that change the standard approach to cardiac motion compensation in order to increase the efficiency of cardioavscular MRI, to provide more flexibility and robustness, new temporal information and new tissue information. The proposed approaches help in advancing coronary magnetic resonance angiography (MRA) in the direction of an easy-to-use and multipurpose tool that can be translated to the clinical environment. The first part of the thesis focused on the study of coronary artery motion through gold standard imaging techniques (x-ray angiography) in patients, in order to measure the precision with which the coronary arteries assume the same position beat after beat (coronary artery repositioning). We learned that intervals with minimal coronary artery repositioning occur in peak systole and in mid diastole and we responded with a new pulse sequence (T2~post) that is able to provide peak-systolic imaging. Such a sequence was tested in healthy volunteers and, from the image quality comparison, we learned that the proposed approach provides coronary artery visualization and contrast-to-noise ratio (CNR) comparable with the standard acquisition approach, but with increased signal-to-noise ratio (SNR). The second part of the thesis explored a completely new paradigm for whole- heart cardiovascular MRI. The proposed techniques acquires the data continuously (free-running), instead of being triggered, thus increasing the efficiency of the acquisition and providing four dimensional images of the whole heart, while respiratory self navigation allows for the scan to be performed in free breathing. This enabling technology allows for anatomical and functional evaluation in four dimensions, with high spatial and temporal resolution and without the need for contrast agent injection. The enabling step is the use of a golden-angle based 3D radial trajectory, which allows for a continuous sampling of the k-space and a retrospective selection of the timing parameters of the reconstructed dataset. The free-running 4D acquisition was then combined with a compressed sensing reconstruction algorithm that further increases the temporal resolution of the 4D dataset, while at the same time increasing the overall image quality by removing undersampling artifacts. The obtained 4D images provide visualization of the whole coronary artery tree in each phases of the cardiac cycle and, at the same time, allow for the assessment of the cardiac function with a single free- breathing scan. The quality of the coronary arteries provided by the frames of the free-running 4D acquisition is in line with the one obtained with the standard ECG-triggered one, and the cardiac function evaluation matched the one measured with gold-standard stack of 2D cine approaches. Finally, the last part of the thesis focused on the development of ultrashort echo time (UTE) acquisition scheme for in vivo detection of calcification in the coronary arteries. Recent studies showed that UTE imaging allows for the coronary artery plaque calcification ex vivo, since it is able to detect the short T2 components of the calcification. The heart motion, though, prevented this technique from being applied in vivo. An ECG-triggered self-navigated 3D radial triple- echo UTE acquisition has then been developed and tested in healthy volunteers. The proposed sequence combines a 3D self-navigation approach with a 3D radial UTE acquisition enabling data collection during free breathing. Three echoes are simultaneously acquired to extract the short T2 components of the calcification while a water and fat separation technique allows for proper visualization of the coronary arteries. Even though the results are still preliminary, the proposed sequence showed great potential for the in vivo visualization of coronary artery calcification. In conclusion, the thesis presents three novel MRI approaches aimed at improved characterization and assessment of atherosclerotic coronary artery disease. These approaches provide new anatomical and functional information in four dimensions, and support tissue characterization for coronary artery plaques.
Resumo:
Tämä diplomityö käsittelee sääntöpohjaisen verkkoon pääsyn hallinnan (NAC) ratkaisuja arkkitehtonisesta näkökulmasta. Työssä käydään läpi Trusted Computing Groupin, Microsoft Corporationin, Juniper Networksin sekä Cisco Systemsin NAC-ratkaisuja. NAC koostuu joukosta uusia sekä jo olemassa olevia teknologioita, jotka auttavat ennalta määriteltyyn sääntökantaan perustuen hallitsemaan suojattuun verkkoon pyrkivien laitteiden tietoliikenneyhteyksiä. Käyttäjän tunnistamisen lisäksi NAC pystyy rajoittamaan verkkoon pääsyä laitekohtaisten ominaisuuksien perusteella, esimerkiksi virustunnisteisiin ja käyttöjärjestelmäpäivityksiin liittyen ja paikkaamaan tietyin rajoituksin näissä esiintyviä puutteita verkkoon pääsyn sallimiseksi. NAC on verraten uusi käsite, jolta puuttuu tarkka määritelmä. Tästä johtuen nykymarkkinoilla myydään ominaisuuksiltaan puutteellisia tuotteita NAC-nimikkeellä. Standardointi eri valmistajien NAC-komponenttien yhteentoimivuuden takaamiseksi on meneillään, minkä perusteella ratkaisut voidaan jakaa joko avoimia standardeja tai valmistajakohtaisia standardeja noudattaviksi. Esitellyt NAC-ratkaisut noudattavat standardeja joko rajoitetusti tai eivät lainkaan. Mikään läpikäydyistä ratkaisuista ei ole täydellinen NAC, mutta Juniper Networksin ratkaisu nousee niistä potentiaalisimmaksi jatkokehityksen ja -tutkimuksen kohteeksi TietoEnator Processing & Networks Oy:lle. Eräs keskeinen ongelma NAC-konseptissa on työaseman tietoverkolle toimittama mahdollisesti valheellinen tietoturvatarkistuksen tulos, minkä perusteella pääsyä osittain hallitaan. Muun muassa tähän ongelmaan ratkaisuna voisi olla jo nykytietokoneista löytyvä TPM-siru, mikä takaa tiedon oikeellisuuden ja koskemattomuuden.
Resumo:
JXTA is a mature set of open protocols, with morethan 10 years of history, that enable the creation and deployment of peer-to-peer (P2P) networks, allowing the execution of services in a distributed manner. Throughout its lifecycle, ithas slowly evolved in order to appeal a broad set of different applications. Part of this evolution includes providing basic security capabilities in its protocols in order to achieve some degree of message privacy and authentication. However, undersome contexts, more advanced security requirements should be met, such as anonymity. There are several methods to attain anonymity in generic P2P networks. In this paper, we proposehow to adapt a replicated message-based approach to JXTA, by taking advantage of its idiosyncracies and capabilities.
Resumo:
Azole derivatives are the main therapeutical resource against Candida albicans infection in immunocompromised patients. Nevertheless, the widespread use of azoles has led to reduced effectiveness and selection of resistant strains. In order to guide the development of novel antifungal drugs, 2D-QSAR models based on topological descriptors or molecular fragments were developed for a dataset of 74 molecules. The optimal fragment-based model (r² = 0.88, q² = 0.73 and r²pred = 0.62 with 6PCs) and descriptor-based model (r² = 0.82, q² = 0.79 and r²pred = 0.70 with 2 PCs), when analysed synergically, suggested that the triazolone ring and lipophilic properties are both important to antifungal activity.
Resumo:
Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively.
Resumo:
Modern sophisticated telecommunication devices require even more and more comprehensive testing to ensure quality. The test case amount to ensure well enough coverage of testing has increased rapidly and this increased demand cannot be fulfilled anymore only by using manual testing. Also new agile development models require execution of all test cases with every iteration. This has lead manufactures to use test automation more than ever to achieve adequate testing coverage and quality. This thesis is separated into three parts. Evolution of cellular networks is presented at the beginning of the first part. Also software testing, test automation and the influence of development model for testing are examined in the first part. The second part describes a process which was used to implement test automation scheme for functional testing of LTE core network MME element. In implementation of the test automation scheme agile development models and Robot Framework test automation tool were used. In the third part two alternative models are presented for integrating this test automation scheme as part of a continuous integration process. As a result, the test automation scheme for functional testing was implemented. Almost all new functional level testing test cases can now be automated with this scheme. In addition, two models for integrating this scheme to be part of a wider continuous integration pipe were introduced. Also shift from usage of a traditional waterfall model to a new agile development based model in testing stated to be successful.
Resumo:
The increasing power demand and emerging applications drive the design of electrical power converters into modularization. Despite the wide use of modularized power stage structures, the control schemes that are used are often traditional, in other words, centralized. The flexibility and re-usability of these controllers are typically poor. With a dedicated distributed control scheme, the flexibility and re-usability of the system parts, building blocks, can be increased. Only a few distributed control schemes have been introduced for this purpose, but their breakthrough has not yet taken place. A demand for the further development offlexible control schemes for building-block-based applications clearly exists. The control topology, communication, synchronization, and functionality allocationaspects of building-block-based converters are studied in this doctoral thesis. A distributed control scheme that can be easily adapted to building-block-based power converter designs is developed. The example applications are a parallel and series connection of building blocks. The building block that is used in the implementations of both the applications is a commercial off-the-shelf two-level three-phase frequency converter with a custom-designed controller card. The major challenge with the parallel connection of power stages is the synchronization of the building blocks. The effect of synchronization accuracy on the system performance is studied. The functionality allocation and control scheme design are challenging in the seriesconnected multilevel converters, mainly because of the large number of modules. Various multilevel modulation schemes are analyzed with respect to the implementation, and this information is used to develop a flexible control scheme for modular multilevel inverters.
Resumo:
Both atom localization and Raman cooling, considered in the thesis, reflect recent progress in the area of all-optical methods. We focus on twodimensional (2D) case, using a four-level tripod-type atomic scheme for atom localization within the optical half-wavelength as well as for efficient subrecoil Raman cooling. In the first part, we discuss the principles of 1D atom localization, accompanying by an example of the measurement of a spontaneously-emitted photon. Modifying this example, one archives sub-wavelength localization of a three-level -type atom, measuring the population in its upper state. We go further and obtain 2D sub-wavelength localization for a four-level tripod-type atom. The upper-state population is classified according to the spatial distribution, which in turn forms such structures as spikes, craters and waves. The second part of the thesis is devoted to Raman cooling. The cooling process is controlled by a sequence of velocity-selective transfers from one to another ground state. So far, 1D deep subrecoil cooling has been carried out with the sequence of square or Blackman pulses, applied to -type atoms. In turn, we discuss the transfer of atoms by stimulated Raman adiabatic passage (STIRAP), which provides robustness against the pulse duration if the cooling time is not in any critical role. A tripod-type atomic scheme is used for the purpose of 2D Raman cooling, allowing one to increase the efficiency and simplify the realization of the cooling.
Resumo:
The Laboratory of Intelligent Machine researches and develops energy-efficient power transmissions and automation for mobile construction machines and industrial processes. The laboratory's particular areas of expertise include mechatronic machine design using virtual technologies and simulators and demanding industrial robotics. The laboratory has collaborated extensively with industrial actors and it has participated in significant international research projects, particularly in the field of robotics. For years, dSPACE tools were the lonely hardware which was used in the lab to develop different control algorithms in real-time. dSPACE's hardware systems are in widespread use in the automotive industry and are also employed in drives, aerospace, and industrial automation. But new competitors are developing new sophisticated systems and their features convinced the laboratory to test new products. One of these competitors is National Instrument (NI). In order to get to know the specifications and capabilities of NI tools, an agreement was made to test a NI evolutionary system. This system is used to control a 1-D hydraulic slider. The objective of this research project is to develop a control scheme for the teleoperation of a hydraulically driven manipulator, and to implement a control algorithm between human and machine interaction, and machine and task environment interaction both on NI and dSPACE systems simultaneously and to compare the results.
Resumo:
Paper-based analytical technologies enable quantitative and rapid analysis of analytes from various application areas including healthcare, environmental monitoring and food safety. Because paper is a planar, flexible and light weight substrate, the devices can be transported and disposed easily. Diagnostic devices are especially valuable in resourcelimited environments where diagnosis as well as monitoring of therapy can be made even without electricity by using e.g. colorimetric assays. On the other hand, platforms including printed electrodes can be coupled with hand-held readers. They enable electrochemical detection with improved reliability, sensitivity and selectivity compared with colorimetric assays. In this thesis, different roll-to-roll compatible printing technologies were utilized for the fabrication of low-cost paper-based sensor platforms. The platforms intended for colorimetric assays and microfluidics were fabricated by patterning the paper substrates with hydrophobic vinyl substituted polydimethylsiloxane (PDMS) -based ink. Depending on the barrier properties of the substrate, the ink either penetrates into the paper structure creating e.g. microfluidic channel structures or remains on the surface creating a 2D analog of a microplate. The printed PDMS can be cured by a roll-ro-roll compatible infrared (IR) sintering method. The performance of these platforms was studied by printing glucose oxidase-based ink on the PDMS-free reaction areas. The subsequent application of the glucose analyte changed the colour of the white reaction area to purple with the colour density and intensity depending on the concentration of the glucose solution. Printed electrochemical cell platforms were fabricated on paper substrates with appropriate barrier properties by inkjet-printing metal nanoparticle based inks and by IR sintering them into conducting electrodes. Printed PDMS arrays were used for directing the liquid analyte onto the predetermined spots on the electrodes. Various electrochemical measurements were carried out both with the bare electrodes and electrodes functionalized with e.g. self assembled monolayers. Electrochemical glucose sensor was selected as a proof-of-concept device to demonstrate the potential of the printed electronic platforms.
Resumo:
The objective of this thesis is to develop and generalize further the differential evolution based data classification method. For many years, evolutionary algorithms have been successfully applied to many classification tasks. Evolution algorithms are population based, stochastic search algorithms that mimic natural selection and genetics. Differential evolution is an evolutionary algorithm that has gained popularity because of its simplicity and good observed performance. In this thesis a differential evolution classifier with pool of distances is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, to determine the optimal values for all free parameters of the classifier model during the training phase of the classifier. The differential evolution classifier applies the individually optimized distance measure for each new data set to be classified is generalized to cover a pool of distances. Instead of optimizing a single distance measure for the given data set, the selection of the optimal distance measure from a predefined pool of alternative measures is attempted systematically and automatically. Furthermore, instead of only selecting the optimal distance measure from a set of alternatives, an attempt is made to optimize the values of the possible control parameters related with the selected distance measure. Specifically, a pool of alternative distance measures is first created and then the differential evolution algorithm is applied to select the optimal distance measure that yields the highest classification accuracy with the current data. After determining the optimal distance measures for the given data set together with their optimal parameters, all determined distance measures are aggregated to form a single total distance measure. The total distance measure is applied to the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; a sample belongs to the class represented by the nearest prototype vector when measured with the optimized total distance measure. During the training process the differential evolution algorithm determines the optimal class vectors, selects optimal distance metrics, and determines the optimal values for the free parameters of each selected distance measure. The results obtained with the above method confirm that the choice of distance measure is one of the most crucial factors for obtaining higher classification accuracy. The results also demonstrate that it is possible to build a classifier that is able to select the optimal distance measure for the given data set automatically and systematically. After finding optimal distance measures together with optimal parameters from the particular distance measure results are then aggregated to form a total distance, which will be used to form the deviation between the class vectors and samples and thus classify the samples. This thesis also discusses two types of aggregation operators, namely, ordered weighted averaging (OWA) based multi-distances and generalized ordered weighted averaging (GOWA). These aggregation operators were applied in this work to the aggregation of the normalized distance values. The results demonstrate that a proper combination of aggregation operator and weight generation scheme play an important role in obtaining good classification accuracy. The main outcomes of the work are the six new generalized versions of previous method called differential evolution classifier. All these DE classifier demonstrated good results in the classification tasks.
Resumo:
With the new age of Internet of Things (IoT), object of everyday such as mobile smart devices start to be equipped with cheap sensors and low energy wireless communication capability. Nowadays mobile smart devices (phones, tablets) have become an ubiquitous device with everyone having access to at least one device. There is an opportunity to build innovative applications and services by exploiting these devices’ untapped rechargeable energy, sensing and processing capabilities. In this thesis, we propose, develop, implement and evaluate LoadIoT a peer-to-peer load balancing scheme that can distribute tasks among plethora of mobile smart devices in the IoT world. We develop and demonstrate an android-based proof of concept load-balancing application. We also present a model of the system which is used to validate the efficiency of the load balancing approach under varying application scenarios. Load balancing concepts can be apply to IoT scenario linked to smart devices. It is able to reduce the traffic send to the Cloud and the energy consumption of the devices. The data acquired from the experimental outcomes enable us to determine the feasibility and cost-effectiveness of a load balanced P2P smart phone-based applications.
Resumo:
Object detection is a fundamental task of computer vision that is utilized as a core part in a number of industrial and scientific applications, for example, in robotics, where objects need to be correctly detected and localized prior to being grasped and manipulated. Existing object detectors vary in (i) the amount of supervision they need for training, (ii) the type of a learning method adopted (generative or discriminative) and (iii) the amount of spatial information used in the object model (model-free, using no spatial information in the object model, or model-based, with the explicit spatial model of an object). Although some existing methods report good performance in the detection of certain objects, the results tend to be application specific and no universal method has been found that clearly outperforms all others in all areas. This work proposes a novel generative part-based object detector. The generative learning procedure of the developed method allows learning from positive examples only. The detector is based on finding semantically meaningful parts of the object (i.e. a part detector) that can provide additional information to object location, for example, pose. The object class model, i.e. the appearance of the object parts and their spatial variance, constellation, is explicitly modelled in a fully probabilistic manner. The appearance is based on bio-inspired complex-valued Gabor features that are transformed to part probabilities by an unsupervised Gaussian Mixture Model (GMM). The proposed novel randomized GMM enables learning from only a few training examples. The probabilistic spatial model of the part configurations is constructed with a mixture of 2D Gaussians. The appearance of the parts of the object is learned in an object canonical space that removes geometric variations from the part appearance model. Robustness to pose variations is achieved by object pose quantization, which is more efficient than previously used scale and orientation shifts in the Gabor feature space. Performance of the resulting generative object detector is characterized by high recall with low precision, i.e. the generative detector produces large number of false positive detections. Thus a discriminative classifier is used to prune false positive candidate detections produced by the generative detector improving its precision while keeping high recall. Using only a small number of positive examples, the developed object detector performs comparably to state-of-the-art discriminative methods.