918 resultados para 291704 Computer Communications Networks
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
This research addresses the problem of creating interactive experiences to encourage people to explore spaces. Besides the obvious spaces to visit, such as museums or art galleries, spaces that people visit can be, for example, a supermarket or a restaurant. As technology evolves, people become more demanding in the way they use it and expect better forms of interaction with the space that surrounds them. Interaction with the space allows information to be transmitted to the visitors in a friendly way, leading visitors to explore it and gain knowledge. Systems to provide better experiences while exploring spaces demand hardware and software that is not in the reach of every space owner either because of the cost or inconvenience of the installation, that can damage artefacts or the space environment. We propose a system adaptable to the spaces, that uses a video camera network and a wi-fi network present at the space (or that can be installed) to provide means to support interactive experiences using the visitor’s mobile device. The system is composed of an infrastructure (called vuSpot), a language grammar used to describe interactions at a space (called XploreDescription), a visual tool used to design interactive experiences (called XploreBuilder) and a tool used to create interactive experiences (called urSpace). By using XploreBuilder, a tool built of top of vuSpot, a user with little or no experience in programming can define a space and design interactive experiences. This tool generates a description of the space and of the interactions at that space (that complies with the XploreDescription grammar). These descriptions can be given to urSpace, another tool built of top of vuSpot, that creates the interactive experience application. With this system we explore new forms of interaction and use mobile devices and pico projectors to deliver additional information to the users leading to the creation of interactive experiences. The several components are presented as well as the results of the respective user tests, which were positive. The design and implementation becomes cheaper, faster, more flexible and, since it does not depend on the knowledge of a programming language, accessible for the general public.
Resumo:
The way in which electricity networks operate is going through a period of significant change. Renewable generation technologies are having a growing presence and increasing penetrations of generation that are being connected at distribution level. Unfortunately, a renewable energy source is most of the time intermittent and needs to be forecasted. Current trends in Smart grids foresee the accommodation of a variety of distributed generation sources including intermittent renewable sources. It is also expected that smart grids will include demand management resources, widespread communications and control technologies required to use demand response are needed to help the maintenance in supply-demand balance in electricity systems. Consequently, smart household appliances with controllable loads will be likely a common presence in our homes. Thus, new control techniques are requested to manage the loads and achieve all the potential energy present in intermittent energy sources. This thesis is focused on the development of a demand side management control method in a distributed network, aiming the creation of greater flexibility in demand and better ease the integration of renewable technologies. In particular, this work presents a novel multi-agent model-based predictive control method to manage distributed energy systems from the demand side, in presence of limited energy sources with fluctuating output and with energy storage in house-hold or car batteries. Specifically, here is presented a solution for thermal comfort which manages a limited shared energy resource via a demand side management perspective, using an integrated approach which also involves a power price auction and an appliance loads allocation scheme. The control is applied individually to a set of Thermal Control Areas, demand units, where the objective is to minimize the energy usage and not exceed the limited and shared energy resource, while simultaneously indoor temperatures are maintained within a comfort frame. Thermal Control Areas are overall thermodynamically connected in the distributed environment and also coupled by energy related constraints. The energy split is performed based on a fixed sequential order established from a previous completed auction wherein the bids are made by each Thermal Control Area, acting as demand side management agents, based on the daily energy price. The developed solutions are explained with algorithms and are applied to different scenarios, being the results explanatory of the benefits of the proposed approaches.
Resumo:
Liver diseases have severe patients’ consequences, being one of the main causes of premature death. These facts reveal the centrality of one`s daily habits, and how important it is the early diagnosis of these kind of illnesses, not only to the patients themselves, but also to the society in general. Therefore, this work will focus on the development of a diagnosis support system to these kind of maladies, built under a formal framework based on Logic Programming, in terms of its knowledge representation and reasoning procedures, complemented with an approach to computing grounded on Artificial Neural Networks.
Resumo:
About 90% of breast cancers do not cause or are capable of producing death if detected at an early stage and treated properly. Indeed, it is still not known a specific cause for the illness. It may be not only a beginning, but also a set of associations that will determine the onset of the disease. Undeniably, there are some factors that seem to be associated with the boosted risk of the malady. Pondering the present study, different breast cancer risk assessment models where considered. It is our intention to develop a hybrid decision support system under a formal framework based on Logic Programming for knowledge representation and reasoning, complemented with an approach to computing centered on Artificial Neural Networks, to evaluate the risk of developing breast cancer and the respective Degree-of-Confidence that one has on such a happening.
Resumo:
Wireless body sensor networks (WBSNs) constitute a key technology for closing the loop between patients and healthcare providers, as WBSNs provide sensing ability, as well as mobility and portability, essential characteristics for wide acceptance of wireless healthcare technology. However, one important and difficult aspect of WBSNs is to provide data transmissions with quality of service, among other factors due to the antennas being small size and placed close to the body. Such transmissions cannot be fully provided without the assumption of a MAC protocol that solves the problems of the medium sharing. A vast number of MAC protocols conceived for wireless networks are based on random or scheduled schemes. This paper studies firstly the suitability of two MAC protocols, one using CSMA and the other TDMA, to transmit directly to the base station the signals collected continuously from multiple sensor nodes placed on the human body. Tests in a real scenario show that the beaconed TDMA MAC protocol presents an average packet loss ratio lower than CSMA. However, the average packet loss ratio is above 1.0 %. To improve this performance, which is of vital importance in areas such as e-health and ambient assisted living, a hybrid TDMA/CSMA scheme is proposed and tested in a real scenario with two WBSNs and four sensor nodes per WBSN. An average packet loss ratio lower than 0.2 % was obtained with the hybrid scheme. To achieve this significant improvement, the hybrid scheme uses a lightweight algorithm to control dynamically the start of the superframes. Scalability and traffic rate variation tests show that this strategy allows approximately ten WBSNs operating simultaneously without significant performance degradation.
Resumo:
Doctoral Programme in Telecommunication - MAP-tele
Resumo:
Dissertação de mestrado integrado em Engenharia de Telecomunicações e Informática
Resumo:
Report for the scientific sojourn at the Multimedia Communications Laboratory, University of Texas at Dallas, USA, from September to December 2005. The cooperative transmission has been analyzed taking a broadcast relay channel which assumes a scenario with one source and multiple destinations. Moreover, in order to improve the performance in terms of mutual information, it has been considered that for each destination there is another nearby terminal (called relay) which will help to improve the performance of the destination. This scheme combines different types of channels considered in the information theory, such as the relay channel, broadcast channel and interference channel (if the relays transmit information intended only to its associated destination). In this work, the author has studied the optimal way to encode the signals for the different users, known as capacity region (i.e. related to radio resources management ), of the broadcast relay channel.
Resumo:
The following paper presents an overview of the Ph.D Thesis1 presented in [1], which compiles all the research done during the period of time between 2004-2007. In that dissertation the relay-assisted transmission with half-duplex relays is analyzed from different points of view. This study is motivated by the necessity of finding innovative solutions to cope with the requirements of next generation wireless services, and with current radio technology. The use of relayed communications represents a change of paradigm of conventional communications, and requires the definition and evaluation of protocols to be applied to single or multiple-user relay communication. With the two fold goal of enhancing spectral efficiency and homogenize service in cellular communications, system design is investigated at physical (type of transmissions of the relay, decoding mode, ..) and upper layers (resource allocation, dynamic link control).
Resumo:
Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These networks--whose nodes can vary from tens to hundreds--are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were used to construct binary adjacency connectomes, which were assessed with regards to a number of graph metrics such as clustering coefficient, modularity, efficiency, economic efficiency, and assortativity. We showed that the estimates of these metrics significantly differ depending on the network size. Larger networks had higher efficiency, higher assortativity and lower modularity compared to those with smaller size and the same density. These findings indicate that the network size should be considered in any comparison of networks across studies.
Resumo:
Current parallel applications running on clusters require the use of an interconnection network to perform communications among all computing nodes available. Imbalance of communications can produce network congestion, reducing throughput and increasing latency, degrading the overall system performance. On the other hand, parallel applications running on these networks posses representative stages which allow their characterization, as well as repetitive behavior that can be identified on the basis of this characterization. This work presents the Predictive and Distributed Routing Balancing (PR-DRB), a new method developed to gradually control network congestion, based on paths expansion, traffic distribution and effective traffic load, in order to maintain low latency values. PR-DRB monitors messages latencies on intermediate routers, makes decisions about alternative paths and record communication pattern information encountered during congestion situation. Based on the concept of applications repetitiveness, best solution recorded are reapplied when saved communication pattern re-appears. Traffic congestion experiments were conducted in order to evaluate the performance of the method, and improvements were observed.
Resumo:
MOTIVATION: In silico modeling of gene regulatory networks has gained some momentum recently due to increased interest in analyzing the dynamics of biological systems. This has been further facilitated by the increasing availability of experimental data on gene-gene, protein-protein and gene-protein interactions. The two dynamical properties that are often experimentally testable are perturbations and stable steady states. Although a lot of work has been done on the identification of steady states, not much work has been reported on in silico modeling of cellular differentiation processes. RESULTS: In this manuscript, we provide algorithms based on reduced ordered binary decision diagrams (ROBDDs) for Boolean modeling of gene regulatory networks. Algorithms for synchronous and asynchronous transition models have been proposed and their corresponding computational properties have been analyzed. These algorithms allow users to compute cyclic attractors of large networks that are currently not feasible using existing software. Hereby we provide a framework to analyze the effect of multiple gene perturbation protocols, and their effect on cell differentiation processes. These algorithms were validated on the T-helper model showing the correct steady state identification and Th1-Th2 cellular differentiation process. AVAILABILITY: The software binaries for Windows and Linux platforms can be downloaded from http://si2.epfl.ch/~garg/genysis.html.
Resumo:
Network analysis naturally relies on graph theory and, more particularly, on the use of node and edge metrics to identify the salient properties in graphs. When building visual maps of networks, these metrics are turned into useful visual cues or are used interactively to filter out parts of a graph while querying it, for instance. Over the years, analysts from different application domains have designed metrics to serve specific needs. Network science is an inherently cross-disciplinary field, which leads to the publication of metrics with similar goals; different names and descriptions of their analytics often mask the similarity between two metrics that originated in different fields. Here, we study a set of graph metrics and compare their relative values and behaviors in an effort to survey their potential contributions to the spatial analysis of networks.