934 resultados para 18S ribosomal RNA
Resumo:
The ribosome is a highly conserved cellular complex and constitutes the center of protein biosynthesis. As the ribosome consists to about 2/3 of ribosomal RNA (rRNA), the rRNA is involved in most steps of translation. In order to investigate the role of some defined rRNA residues in different aspects of translation we use the atomic mutagenesis approach. This method allows the site-specific incorporation of unnatural nucleosides into the rRNA in the context of the complete 70S from Thermus aquaticus, and thereby exceeds the possibilities of conventional mutagenesis. We first studied ribosome-stimulated EF-G GTP hydrolysis. Here, we could show that the non-bridging phosphate oxygen of A2662, which is part of the Sarcin-Ricin-Loop, is required for EF-G GTPase activation by the ribosome. EF-G GTPase is a crucial step for tRNA translocation from the A- to the P-site, and from the P- to the E-site, respectively. We furthermore used the atomic mutagenesis approach to more precisely characterize the 23S rRNA functional groups involved in E-site tRNA binding. While the ribosomal A- and P-sites have been functionally well characterized in the past, the contribution of the E-site to protein biosynthesis is still poorly understood in molecular terms. Our data disclose the importance of the highly conserved E-site base pair G2421-C2395 for effective translation. Ribosomes with a disrupted G2421-C2395 base pair are defective in tRNA binding to the E-site. This results in an impaired translation of genuine mRNAs, while homo-polymeric templates are not affected. Cumulatively our data emphasize the importance of E-site tRNA occupancy and in particular the intactness of the 23S rRNA base pair G2421-C2395 for productive protein biosynthesis.
Resumo:
Fasciola hepatica, also called the large liver fluke, is a trematode which can infect most mammals. Monitoring the infection rate of snails, which function as intermediate hosts and harbour larval stages of F. hepatica, is an important component of epidemiological studies on fascioliasis. For this purpose, DNA probes were generated which can be used for the detection of F. hepatica larvae in snails. Four highly repetitive DNA fragments were cloned in a plasmid vector and tested by Southern blot hybridization to the DNA of various trematodes for specificity and sensitivity. The probes Fhr-I, Fhr-II and Fhr-III hybridized only to F. hepatica DNA. Fhr-IV contained ribosomal RNA gene sequences and cross-hybridize with the DNA from various other trematode species. Squash blot analysis showed that the different probes were able to detect the parasite larvae in trematode-infected snails even as isolated single larvae. No signals were obtained in squash blots of uninfected snails. Probes Fhr-I, Fhr-II and Fhr-III are thus useful specific tools for studying the epidemiology of fascioliasis. The probe Fhr-IV, because of its broader spectrum, can be used to detect the larvae of a wide range of trematode species of waterbirds, which are the causative agents of swimmer's itch.
Resumo:
Historically morphological features were used as the primary means to classify organisms. However, the age of molecular genetics has allowed us to approach this field from the perspective of the organism's genetic code. Early work used highly conserved sequences, such as ribosomal RNA. The increasing number of complete genomes in the public data repositories provides the opportunity to look not only at a single gene, but at organisms' entire parts list. ^ Here the Sequence Comparison Index (SCI) and the Organism Comparison Index (OCI), algorithms and methods to compare proteins and proteomes, are presented. The complete proteomes of 104 sequenced organisms were compared. Over 280 million full Smith-Waterman alignments were performed on sequence pairs which had a reasonable expectation of being related. From these alignments a whole proteome phylogenetic tree was constructed. This method was also used to compare the small subunit (SSU) rRNA from each organism and a tree constructed from these results. The SSU rRNA tree by the SCI/OCI method looks very much like accepted SSU rRNA trees from sources such as the Ribosomal Database Project, thus validating the method. The SCI/OCI proteome tree showed a number of small but significant differences when compared to the SSU rRNA tree and proteome trees constructed by other methods. Horizontal gene transfer does not appear to affect the SCI/OCI trees until the transferred genes make up a large portion of the proteome. ^ As part of this work, the Database of Related Local Alignments (DaRLA) was created and contains over 81 million rows of sequence alignment information. DaRLA, while primarily used to build the whole proteome trees, can also be applied shared gene content analysis, gene order analysis, and creating individual protein trees. ^ Finally, the standard BLAST method for analyzing shared gene content was compared to the SCI method using 4 spirochetes. The SCI system performed flawlessly, finding all proteins from one organism against itself and finding all the ribosomal proteins between organisms. The BLAST system missed some proteins from its respective organism and failed to detect small ribosomal proteins between organisms. ^
Resumo:
Ocean acidification may stimulate primary production through increased availability of inorganic carbon in the photic zone, which may in turn change the biogenic flux of dissolved organic carbon (DOC) and the growth potential of heterotrophic bacteria. To investigate the effects of ocean acidification on marine bacterial assemblages, a two-by-three factorial mescosom experiment was conducted using surface sea water from the East Greenland Current in Fram Strait. Pyrosequencing of the V1-V2 region of bacterial 16S ribosomal RNA genes was used to investigate differences in the endpoint (Day 9) composition of bacterial assemblages in mineral nutrient-replete mesocosms amended with glucose (0 µm, 5.3 µm and 15.9 µm) under ambient (250 µatm) or acidified (400 µatm) partial pressures of CO2 (pCO2). All mesocosms showed low richness and diversity by Chao1 estimator and Shannon index, respectively, with general dominance by Gammaproteobacteria and Flavobacteria. Nonmetric multidimensional scaling analysis and two-way analysis of variance of the Jaccard dissimilarity matrix (97% similarity cut-off) demonstrated that the significant community shift between 0 µm and 15.9 µm glucose addition at 250 µatm pCO2 was eliminated at 400 µatm pCO2. These results suggest that the response potential of marine bacteria to DOC input may be altered under acidified conditions.
Resumo:
The Global Ocean Sampling (GOS) expedition is currently the largest and geographically most comprehensive metagenomic dataset, including samples from the Atlantic, Pacific, and Indian Oceans. This study makes use of the wide range of environmental conditions and habitats encompassed within the GOS sites in order to investigate the ecological structuring of bacterial and archaeal taxon ranks. Community structures based on taxonomically classified 16S ribosomal RNA (rRNA) gene fragments at phylum, class, order, family, and genus rank levels were examined using multivariate statistical analysis, and the results were inspected in the context of oceanographic environmental variables and structured habitat classifications. At all taxon rank levels, community structures of neritic, oceanic, estuarine biomes, as well as other exotic biomes (salt marsh, lake, mangrove), were readily distinguishable from each other. A strong structuring of the communities with chlorophyll a concentration and a weaker yet significant structuring with temperature and salinity were observed. Furthermore, there were significant correlations between community structures and habitat classification. These results were used for further investigation of one-to-one relationships between taxa and environment and provided indications for ecological preferences shaped by primary production for both cultured and uncultured bacterial and archaeal clades.
Resumo:
DNA extraction was carried out as described on the MICROBIS project pages (http://icomm.mbl.edu/microbis ) using a commercially available extraction kit. We amplified the hypervariable regions V4-V6 of archaeal and bacterial 16S rRNA genes using PCR and several sets of forward and reverse primers (http://vamps.mbl.edu/resources/primers.php). Massively parallel tag sequencing of the PCR products was carried out on a 454 Life Sciences GS FLX sequencer at Marine Biological Laboratory, Woods Hole, MA, following the same experimental conditions for all samples. Sequence reads were submitted to a rigorous quality control procedure based on mothur v30 (doi:10.1128/AEM.01541-09) including denoising of the flow grams using an algorithm based on PyroNoise (doi:10.1038/nmeth.1361), removal of PCR errors and a chimera check using uchime (doi:10.1093/bioinformatics/btr381). The reads were taxonomically assigned according to the SILVA taxonomy (SSURef v119, 07-2014; doi:10.1093/nar/gks1219) implemented in mothur and clustered at 98% ribosomal RNA gene V4-V6 sequence identity. V4-V6 amplicon sequence abundance tables were standardized to account for unequal sampling effort using 1000 (Archaea) and 2300 (Bacteria) randomly chosen sequences without replacement using mothur and then used to calculate inverse Simpson diversity indices and Chao1 richness (doi:10.2307/4615964). Bray-Curtis dissimilarities (doi:10.2307/1942268) between all samples were calculated and used for 2-dimensional non metric multidimensional scaling (NMDS) ordinations with 20 random starts (doi:10.1007/BF02289694). Stress values below 0.2 indicated that the multidimensional dataset was well represented by the 2D ordination. NMDS ordinations were compared and tested using Procrustes correlation analysis (doi:10.1007/BF02291478). All analyses were carried out with the R statistical environment and the packages vegan (available at: http://cran.r-project.org/package=vegan), labdsv (available at: http://cran.r-project.org/package=labdsv), as well as with custom R scripts. Operational taxonomic units at 98% sequence identity (OTU0.03) that occurred only once in the whole dataset were termed absolute single sequence OTUs (SSOabs; doi:10.1038/ismej.2011.132). OTU0.03 sequences that occurred only once in at least one sample, but may occur more often in other samples were termed relative single sequence OTUs (SSOrel). SSOrel are particularly interesting for community ecology, since they comprise rare organisms that might become abundant when conditions change.16S rRNA amplicons and metagenomic reads have been stored in the sequence read archive under SRA project accession number SRP042162.
Resumo:
Polycystine radiolaria are among few protistan groups that possess a comprehensive fossil record available for study by micropaleontologists. The Polycystinea and the Acantharea, whose skeletons do not become fossilized, were once members of the class “Radiolaria” (“Radiolaria” sensu lato: Polycystinea, Phaeodarea, and Acantharea) originally proposed by Haeckel but are now included in the superclass Actinopoda. Phylogenetic relationships within this superclass remain largely enigmatic. We investigated the evolutionary relationship of the Acantharea and the Polycystinea to other protists using phylogenetic analyses of 16S-like ribosomal RNA (rRNA) coding regions. We circumvented the need to culture these organisms by collecting and maintaining reproductive stages that contain many copies of their genomic DNA. This strategy facilitated extraction of genomic DNA and its purification from symbiont and prey DNA. Phylogenetic trees inferred from comparisons of 16S-like coding regions do not support a shared history between the Acantharea and the Polycystinea. However, the monophyly of the Acantharea and the separate monophyly of the Polycystinea (Spumellarida) are well supported by our molecular-based trees. The acantharian lineage branches among crown organisms whereas the polycystine lineage diverges before the radiation of the crown groups. We conclude that the Actinopoda does not represent a monophyletic evolutionary assemblage and recommend that this taxonomic designation be discarded.
Resumo:
The Mycetozoa include the cellular (dictyostelid), acellular (myxogastrid), and protostelid slime molds. However, available molecular data are in disagreement on both the monophyly and phylogenetic position of the group. Ribosomal RNA trees show the myxogastrid and dictyostelid slime molds as unrelated early branching lineages, but actin and β-tubulin trees place them together as a single coherent (monophyletic) group, closely related to the animal–fungal clade. We have sequenced the elongation factor-1α genes from one member of each division of the Mycetozoa, including Dictyostelium discoideum, for which cDNA sequences were previously available. Phylogenetic analyses of these sequences strongly support a monophyletic Mycetozoa, with the myxogastrid and dictyostelid slime molds most closely related to each other. All phylogenetic methods used also place this coherent Mycetozoan assemblage as emerging among the multicellular eukaryotes, tentatively supported as more closely related to animals + fungi than are green plants. With our data there are now three proteins that consistently support a monophyletic Mycetozoa and at least four that place these taxa within the “crown” of the eukaryote tree. We suggest that ribosomal RNA data should be more closely examined with regard to these questions, and we emphasize the importance of developing multiple sequence data sets.
Resumo:
Understanding the effects of the external environment on bacterial gene expression can provide valuable insights into an array of cellular mechanisms including pathogenesis, drug resistance, and, in the case of Mycobacterium tuberculosis, latency. Because of the absence of poly(A)+ mRNA in prokaryotic organisms, studies of differential gene expression currently must be performed either with large amounts of total RNA or rely on amplification techniques that can alter the proportional representation of individual mRNA sequences. We have developed an approach to study differences in bacterial mRNA expression that enables amplification by the PCR of a complex mixture of cDNA sequences in a reproducible manner that obviates the confounding effects of selected highly expressed sequences, e.g., ribosomal RNA. Differential expression using customized amplification libraries (DECAL) uses a library of amplifiable genomic sequences to convert total cellular RNA into an amplified probe for gene expression screens. DECAL can detect 4-fold differences in the mRNA levels of rare sequences and can be performed on as little as 10 ng of total RNA. DECAL was used to investigate the in vitro effect of the antibiotic isoniazid on M. tuberculosis, and three previously uncharacterized isoniazid-induced genes, iniA, iniB, and iniC, were identified. The iniB gene has homology to cell wall proteins, and iniA contains a phosphopantetheine attachment site motif suggestive of an acyl carrier protein. The iniA gene is also induced by the antibiotic ethambutol, an agent that inhibits cell wall biosynthesis by a mechanism that is distinct from isoniazid. The DECAL method offers a powerful new tool for the study of differential gene expression.
Resumo:
Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of α-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria.
Resumo:
Trichomonads are anaerobic flagellated protists that, based on analyses of ribosomal RNA sequences, represent one of the earliest branching lineages among the eukaryotes. The absence of mitochondria in these organisms coupled with their deep phylogenetic position has prompted several authors to suggest that trichomonads, along with other deeply-branching amitochondriate protist groups, diverged from the main eukaryotic lineage prior to the endosymbiotic origin of mitochondria. In this report we describe the presence of a gene in Trichomonas vaginalis specifically related to mitochondrial chaperonin 60 (cpn60). A recent study indicates that a protein immunologically related to cpn60 is located in trichomonad hydrogenosomes. Together, these data provide evidence that ancestors of trichomonads perhaps harbored the endosymbiotic progenitors of mitochondria, but that these evolved into hydrogenosomes early in trichomonad evolution.
Resumo:
We present here the complete genome sequence of a common avian clone of Pasteurella multocida, Pm70. The genome of Pm70 is a single circular chromosome 2,257,487 base pairs in length and contains 2,014 predicted coding regions, 6 ribosomal RNA operons, and 57 tRNAs. Genome-scale evolutionary analyses based on pairwise comparisons of 1,197 orthologous sequences between P. multocida, Haemophilus influenzae, and Escherichia coli suggest that P. multocida and H. influenzae diverged ≈270 million years ago and the γ subdivision of the proteobacteria radiated about 680 million years ago. Two previously undescribed open reading frames, accounting for ≈1% of the genome, encode large proteins with homology to the virulence-associated filamentous hemagglutinin of Bordetella pertussis. Consistent with the critical role of iron in the survival of many microbial pathogens, in silico and whole-genome microarray analyses identified more than 50 Pm70 genes with a potential role in iron acquisition and metabolism. Overall, the complete genomic sequence and preliminary functional analyses provide a foundation for future research into the mechanisms of pathogenesis and host specificity of this important multispecies pathogen.
Resumo:
The fate of redundant genes resulting from genome duplication is poorly understood. Previous studies indicated that ribosomal RNA genes from one parental origin are epigenetically silenced during interspecific hybridization or polyploidization. Regulatory mechanisms for protein-coding genes in polyploid genomes are unknown, partly because of difficulty in studying expression patterns of homologous genes. Here we apply amplified fragment length polymorphism (AFLP)–cDNA display to perform a genome-wide screen for orthologous genes silenced in Arabidopsis suecica, an allotetraploid derived from Arabidopsis thaliana and Cardaminopsis arenosa. We identified ten genes that are silenced from either A. thaliana or C. arenosa origin in A. suecica and located in four of the five A. thaliana chromosomes. These genes represent a variety of RNA and predicted proteins including four transcription factors such as TCP3. The silenced genes in the vicinity of TCP3 are hypermethylated and reactivated by blocking DNA methylation, suggesting epigenetic regulation is involved in the expression of orthologous genes in polyploid genomes. Compared with classic genetic mutations, epigenetic regulation may be advantageous for selection and adaptation of polyploid species during evolution and development.
Resumo:
Gene order in the chromosomes of Escherichia coli K-12 and Salmonella typhimurium LT2, and in many other species of Salmonella, is strongly conserved, even though the genera diverged about 160 million years ago. However, partial digestion of chromosomal DNA of Salmonella typhi, the causal organism of typhoid fever, with the endonuclease I-CeuI followed by separation of the DNA fragments by pulsed-field gel electrophoresis showed that the chromosomes of independent wild-type isolates of S. typhi are rearranged due to homologous recombination between the seven rrn genes that code for ribosomal RNA. The order of genes within the I-CeuI fragments is largely conserved, but the order of the fragments on the chromosome is rearranged. Twenty-one different orders of the I-CeuI fragments were detected among the 127 wild-type strains we examined. Duplications and deletions were not found, but transpositions and inversions were common. Transpositions of I-CeuI fragments into sites that do not change their distance from the origin of replication (oriC) are frequently detected among the wild-type strains, but transpositions that move the fragments much further from oriC were rare. This supports the gene dosage hypothesis that genes at different distances from oriC have different gene dosages and, hence, different gene expression, and that during evolution genes become adapted to their specific location; thus, cells with changes in gene location due to transpositions may be less fit. Therefore, gene dosage may be one of the forces that conserves gene order, although its effects seem less strong in S. typhi than in other enteric bacteria. However, both the gene dosage and the genomic balance hypotheses, the latter of which states that the origin (oriC) and terminus (TER) of replication must be separated by 180 degrees C, need further investigation.
Resumo:
Phylogenetic analysis of ribosomal RNA sequences obtained from uncultivated organisms of a hot spring in Yellowstone National Park reveals several novel groups of Archaea, many of which diverged from the crenarchaeal line of descent prior to previously characterized members of that kingdom. Universal phylogenetic trees constructed with the addition of these sequences indicate monophyly of Archaea, with modest bootstrap support. The data also show a specific relationship between low-temperature marine Archaea and some hot spring Archaea. Two of the environmental sequences are enigmatic: depending upon the data set and analytical method used, these sequences branch deeply within the Crenarchaeota, below the bifurcation between Crenarchaeota and Euryarchaeota, or even as the sister group to Eukaryotes. If additional data confirm either of the latter two placements, then the organisms represented by these ribosomal RNA sequences would merit recognition as a new kingdom, provisionally named "Korarchaeota."