989 resultados para 1-Hydroxyarchaeols, unsaturated sn2, d13C


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cretaceous Heterohelix moremani (Cushman) was the only biserial planktonic foraminiferal species from its first appearance in the late Albian up to the Cenomanian/Turonian boundary. Within that time, it increased gradually in abundance relative to other planktonic foraminifera in five Circum-North Atlantic sections. It is generally rare in upper Albian sediments, common in most of the Cenomanian and very abundant in sediments representing the latest Cenomanian Oceanic Anoxic Event. Short-term variations on the overall abundance trend correlate with positive excursions in the bulk carbonate delta13C record. Maximum rain rates of H. moremani during OAE2 show that this species was an opportunist that did well in extreme conditions, but its overall distribution indicates that it is not necessarily a marker for very high palaeoproductivity environments. Stable oxygen and carbon isotope measurements on foraminiferal species indicate that H. moremani was a surface water dweller at least in part of its geographic range, but incorporated 13C out of equilibrium with ambient seawater. It is depleted in delta13C relative to other planktonic foraminifera, which is attributed to vital effects related to its opportunistic character.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paleontological, stable isotopic, trace elemental abundance, and magnetostratigraphic studies have been performed on limestones spanning the Cretaceous/Tertiary boundary transition at Ocean Drilling Program (ODP) Hole 807C. Paleontological evidence exists for considerable resedimentation, which we attribute to the fact that Hole 807C is located in a basement graben. Age estimates based on planktonic foraminiferal biostratigraphy, as well as magnetostratigraphy, indicate that sedimentation rates could have been on the order of 12-14 m/m.y. This is significantly higher than those documented in other important Deep Sea Drilling Project (DSDP) and ODP Cretaceous/Tertiary boundary sections using the same age control points (e.g., DSDP Hole 577 and ODP Hole 690B), although not as high as those documented from DSDP Hole 524. The expanded nature of this succession has resulted in the Cretaceous/Tertiary boundary d13C decrease occurring over approximately a 9-m interval. Ir analysis of these sediments do not show a single large anomaly, as has been found in other Cretaceous/Tertiary boundary sections, but trivial background levels instead. Ce data support the hypothesis that this section has been expanded by secondary sedimentological processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Saanich Inlet has been a highly productive fjord since the last glaciation. During ODP Leg 169S, nearly 70 m of Holocene sediments were recovered from Hole 1034 at the center of the inlet. The younger sediments are laminated, anaerobic, and rich in organic material (1-2.5 wt.% Corg), whereas the older sediments below 70 mbsf are non-laminated, aerobic, with glacio-marine characteristics and have a significantly lower organic matter content. This difference is also reflected in the changes of interstitial fluids, and in biomarker compositions and their carbon isotope signals. The bacterially-derived hopanoid 17alpha(H),21beta(H)-hop-22(29)-ene (diploptene) occurs in Saanich Inlet sediments throughout the Holocene but is not present in Pleistocene glacio-marine sediments. Its concentration increases after ~6000 years BP up to present time to about 70 µg/g Corg, whereas terrigenous biomarkers such as the n-alkane C31 are low throughout the Holocene (<51 µg/g Corg) and even slightly decrease to 36 µg/g Corg at the most recent time. The increasing concentrations of diploptene in sediments younger than ~6000 years BP separate a recent period of higher primary productivity, stronger anoxic bottom waters, and higher bacterial activity from an older period with lesser activity, heretofore undifferentiated. Carbon isotopic compositions of diploptene in the Holocene are between ~31.5 and ~39.6 per mil PDB after ~6000 years BP. These differences in the carbon isotopic record of diploptene probably reflect changes in microbial community structure of bacteria living at the oxic-anoxic interface of the overlying water column. The heavier isotope values are consistent with the activity of nitrifying bacteria and the lighter isotope values with that of aerobic methanotrophic bacteria. Therefore, intermediate delta13C values probably represent mixtures between the populations. In contrast, carbon isotopic compositions of n-C31 are roughly constant at ~31.4 ± 1.1 per mil PDB throughout the Holocene, indicating a uniform input from cuticular waxes of higher plants. Prior to ~6000 years BP, diploptene enriched in 13C of up to -26.3 per mil PDB is indicative of cyanobacteria living in the photic zone and suggests a period of lower primary productivity, more oxygenated bottom waters, and hence lower bacterial activity during the earliest Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Instrumental climate observations provide robust records of global land and ocean temperatures during the twentieth century. Unlike for temperature, continuous salinity observations in the surface ocean are scarce prior to 1970, and the magnitude of salinity changes during the twentieth century is largely unknown. Surface ocean salinity is a major component in climate dynamics, as it influences ocean circulation and water mass formation. Here we present an annually resolved reconstruction of salinity variations in the surface waters of the western subtropical North Pacific Ocean since 1873, based on bimonthly records of d18O, Sr/Ca, and U/Ca in a coral from the Ogasawara Islands. The reconstruction indicates that an abrupt regime shift toward fresher surface ocean conditions occurred between 1905 and 1910. Observational atmospheric data suggest that the abrupt freshening was associated with a weakening of the winds that drive the Kuroshio Current system and the associated subtropical gyre circulation. We note that the abrupt early-twentieth-century freshening in the western subtropical North Pacific precedes abrupt climate change in the northern North Atlantic by a few years. The potential for abrupt regime shifts in surface ocean salinity should be considered in climate predictions for the coming decades.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A detailed oxygen and carbon isotope study of the upper Maestrichtian-lower Paleocene section of Hole 516F from the Rio Grande Rise reveals that large isotopic anomalies are clearly associated with the Cretaceous/Tertiary boundary. Across the Cretaceous/Tertiary boundary, the total carbonate content reaches a maximum exceeding 80% before rapidly decreasing in covariance with the carbon isotope record. This strong covariance between d13C and percent CaCO3 suggests either a significant reduction in primary productivity or a rapid shoaling of the calcium carbonate compensation depth. Importantly, the d13C record 2 Ma after the Cretaceous/Tertiary boundary remained depleted in 13C by at least 0.5 per mil compared to the late Maestrichtian.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the Cretaceous, widespread black shale deposition occurred during a series of Oceanic Anoxic Events (OAEs). Multiple processes are known to control the deposition of marine black shales, including changes in primary productivity, organic matter preservation, and dilution. OAEs offer an opportunity to evaluate the relative roles of these forcing factors. The youngest of these events-the Coniacian to Santonian OAE 3-resulted in a prolonged organic carbon burial event in shallow and restricted marine environments including the Western Interior Seaway. New high-resolution isotope, organic, and trace metal records from the latest Turonian to early Santonian Niobrara Formation are used to characterize the amount and composition of organic matter preserved, as well as the geochemical conditions under which it accumulated. Redox sensitive metals (Mo, Mn, and Re) indicate a gradual drawdown of oxygen leading into the abrupt onset of organic carbon-rich (up to 8%) deposition. High Hydrogen Indices (HI) and organic carbon to total nitrogen ratios (C:N) demonstrate that the elemental composition of preserved marine organic matter is distinct under different redox conditions. Local changes in d13C indicate that redox-controlled early diagenesis can also significantly alter d13Corg records. These results demonstrate that the development of anoxia is of primary importance in triggering the prolonged carbon burial in the Niobrara Formation. Sea level reconstructions, d18O results, and Mo/total organic carbon ratios suggest that stratification and enhanced bottom water restriction caused the drawdown of bottom water oxygen. Increased nutrients from benthic regeneration and/or continental runoff may have sustained primary productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pleistocene stable carbon isotope (d13C) records from surface and deep dwelling foraminifera in all major ocean basins show two distinct long-term carbon isotope fluctuations since 1.00 Ma. The first started around 1.00 Ma and was characterised by a 0.35 per mil decrease in d13C values until 0.90 Ma, followed by an increase of 0.60 per mil lasting until 0.50 Ma. The subsequent fluctuation started with a 0.40 per mil decrease between 0.50 and 0.25 Ma, followed by an increase of 0.30 per mil between 0.25 and 0.10 Ma. Here, we evaluate existing evidence and various hypotheses for these global Pleistocene d13C fluctuations and present an interpretation, where the fluctuations most likely resulted from concomitant changes in the burial fluxes of organic and inorganic carbon due to ventilation changes and/or changes in the production and export ratio. Our model indicates that to satisfy the long-term 'stability' of the Pleistocene lysocline, the ratio between the amounts of change in the organic and inorganic carbon burial fluxes would have to be close to a 1:1 ratio, as deviations from this ratio would lead to sizable variations in the depth of the lysocline. It is then apparent that the mid-Pleistocene climate transition, which, apart from the glacial cycles, represents the most fundamental change in the Pleistocene climate, was likely not associated with a fundamental change in atmospheric pCO2. While recognising that high frequency glacial/interglacial cycles are associated with relatively large (100 ppmv) changes in pCO2, our model scenario (with burial changes close to a 1:1 ratio) produces a maximum long-term variability of only 20 ppmv over the fluctuation between 1.00 and 0.50 Ma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid warming of arctic regions during recent decades has been recorded by instrumental monitoring, but the natural climate variability in the past is still sparsely reconstructed across many areas. We have reconstructed past climate changes in subarctic west-central Canada. Stable carbon and oxygen isotope ratios (d13C, d18O) were derived from a single Sphagnum fuscum plant component; alpha-cellulose isolated from stems. Periods of warmer and cooler conditions identified in this region, described in terms of a "Mediaeval Climatic Anomaly" and "Little Ice Age" were registered in the temperature reconstruction based on the d13C record. Some conclusions could be drawn about wet/dry shifts during the same time interval from the d18O record, humification indices and the macrofossil analysis. The results were compared with other proxy data from the vicinity of the study area. The amplitude of the temperature change was similar to that in chironomid based reconstructions, showing c. 6.5 ±2.3 °C variability in July temperatures during the past 6.2 ka.