994 resultados para 019900 OTHER MATHEMATICAL SCIENCES
Resumo:
This study presents a comprehensive mathematical formulation model for a short-term open-pit mine block sequencing problem, which considers nearly all relevant technical aspects in open-pit mining. The proposed model aims to obtain the optimum extraction sequences of the original-size (smallest) blocks over short time intervals and in the presence of real-life constraints, including precedence relationship, machine capacity, grade requirements, processing demands and stockpile management. A hybrid branch-and-bound and simulated annealing algorithm is developed to solve the problem. Computational experiments show that the proposed methodology is a promising way to provide quantitative recommendations for mine planning and scheduling engineers.
Resumo:
A spatial sampling design that uses pair-copulas is presented that aims to reduce prediction uncertainty by selecting additional sampling locations based on both the spatial configuration of existing locations and the values of the observations at those locations. The novelty of the approach arises in the use of pair-copulas to estimate uncertainty at unsampled locations. Spatial pair-copulas are able to more accurately capture spatial dependence compared to other types of spatial copula models. Additionally, unlike traditional kriging variance, uncertainty estimates from the pair-copula account for influence from measurement values and not just the configuration of observations. This feature is beneficial, for example, for more accurate identification of soil contamination zones where high contamination measurements are located near measurements of varying contamination. The proposed design methodology is applied to a soil contamination example from the Swiss Jura region. A partial redesign of the original sampling configuration demonstrates the potential of the proposed methodology.
Resumo:
The phosphine distribution in a cylindrical silo containing grain is predicted. A three-dimensional mathematical model, which accounts for multicomponent gas phase transport and the sorption of phosphine into the grain kernel is developed. In addition, a simple model is presented to describe the death of insects within the grain as a function of their exposure to phosphine gas. The proposed model is solved using the commercially available computational fluid dynamics (CFD) software, FLUENT, together with our own C code to customize the solver in order to incorporate the models for sorption and insect extinction. Two types of fumigation delivery are studied, namely, fan- forced from the base of the silo and tablet from the top of the silo. An analysis of the predicted phosphine distribution shows that during fan forced fumigation, the position of the leaky area is very important to the development of the gas flow field and the phosphine distribution in the silo. If the leak is in the lower section of the silo, insects that exist near the top of the silo may not be eradicated. However, the position of a leak does not affect phosphine distribution during tablet fumigation. For such fumigation in a typical silo configuration, phosphine concentrations remain low near the base of the silo. Furthermore, we find that half-life pressure test readings are not an indicator of phosphine distribution during tablet fumigation.
Resumo:
A computational model for isothermal axisymmetric turbulent flow in a quarl burner is set up using the CFD package FLUENT, and numerical solutions obtained from the model are compared with available experimental data. A standard k-e model and and two versions of the RNG k-e model are used to model the turbulence. One of the aims of the computational study is to investigate whether the RNG based k-e turbulence models are capable of yielding improved flow predictions compared with the standard k-e turbulence model. A difficulty is that the flow considered here features a confined vortex breakdown which can be highly sensitive to flow behaviour both upstream and downstream of the breakdown zone. Nevertheless, the relatively simple confining geometry allows us to undertake a systematic study so that both grid-independent and domain-independent results can be reported. The systematic study includes a detailed investigation of the effects of upstream and downstream conditions on the predictions, in addition to grid refinement and other tests to ensure that numerical error is not significant. Another important aim is to determine to what extent the turbulence model predictions can provide us with new insights into the physics of confined vortex breakdown flows. To this end, the computations are discussed in detail with reference to known vortex breakdown phenomena and existing theories. A major conclusion is that one of the RNG k-e models investigated here is able to correctly capture the complex forward flow region inside the recirculating breakdown zone. This apparently pathological result is in stark contrast to the findings of previous studies, most of which have concluded that either algebraic or differential Reynolds stress modelling is needed to correctly predict the observed flow features. Arguments are given as to why an isotropic eddy-viscosity turbulence model may well be able to capture the complex flow structure within the recirculating zone for this flow setup. With regard to the flow physics, a major finding is that the results obtained here are more consistent with the view that confined vortex breakdown is a type of axisymmetric boundary layer separation, rather than a manifestation of a subcritical flow state.
Resumo:
The past several years have seen significant advances in the development of computational methods for the prediction of the structure and interactions of coiled-coil peptides. These methods are generally based on pairwise correlations of amino acids, helical propensity, thermal melts and the energetics of sidechain interactions, as well as statistical patterns based on Hidden Markov Model (HMM) and Support Vector Machine (SVM) techniques. These methods are complemented by a number of public databases that contain sequences, motifs, domains and other details of coiled-coil structures identified by various algorithms. Some of these computational methods have been developed to make predictions of coiled-coil structure on the basis of sequence information; however, structural predictions of the oligomerisation state of these peptides still remains largely an open question due to the dynamic behaviour of these molecules. This review focuses on existing in silico methods for the prediction of coiled-coil peptides of functional importance using sequence and/or three-dimensional structural data.
Resumo:
The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein−protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson−Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos−c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos−c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.
Resumo:
Predicting temporal responses of ecosystems to disturbances associated with industrial activities is critical for their management and conservation. However, prediction of ecosystem responses is challenging due to the complexity and potential non-linearities stemming from interactions between system components and multiple environmental drivers. Prediction is particularly difficult for marine ecosystems due to their often highly variable and complex natures and large uncertainties surrounding their dynamic responses. Consequently, current management of such systems often rely on expert judgement and/or complex quantitative models that consider only a subset of the relevant ecological processes. Hence there exists an urgent need for the development of whole-of-systems predictive models to support decision and policy makers in managing complex marine systems in the context of industry based disturbances. This paper presents Dynamic Bayesian Networks (DBNs) for predicting the temporal response of a marine ecosystem to anthropogenic disturbances. The DBN provides a visual representation of the problem domain in terms of factors (parts of the ecosystem) and their relationships. These relationships are quantified via Conditional Probability Tables (CPTs), which estimate the variability and uncertainty in the distribution of each factor. The combination of qualitative visual and quantitative elements in a DBN facilitates the integration of a wide array of data, published and expert knowledge and other models. Such multiple sources are often essential as one single source of information is rarely sufficient to cover the diverse range of factors relevant to a management task. Here, a DBN model is developed for tropical, annual Halophila and temperate, persistent Amphibolis seagrass meadows to inform dredging management and help meet environmental guidelines. Specifically, the impacts of capital (e.g. new port development) and maintenance (e.g. maintaining channel depths in established ports) dredging is evaluated with respect to the risk of permanent loss, defined as no recovery within 5 years (Environmental Protection Agency guidelines). The model is developed using expert knowledge, existing literature, statistical models of environmental light, and experimental data. The model is then demonstrated in a case study through the analysis of a variety of dredging, environmental and seagrass ecosystem recovery scenarios. In spatial zones significantly affected by dredging, such as the zone of moderate impact, shoot density has a very high probability of being driven to zero by capital dredging due to the duration of such dredging. Here, fast growing Halophila species can recover, however, the probability of recovery depends on the presence of seed banks. On the other hand, slow growing Amphibolis meadows have a high probability of suffering permanent loss. However, in the maintenance dredging scenario, due to the shorter duration of dredging, Amphibolis is better able to resist the impacts of dredging. For both types of seagrass meadows, the probability of loss was strongly dependent on the biological and ecological status of the meadow, as well as environmental conditions post-dredging. The ability to predict the ecosystem response under cumulative, non-linear interactions across a complex ecosystem highlights the utility of DBNs for decision support and environmental management.
Resumo:
Many biological environments are crowded by macromolecules, organelles and cells which can impede the transport of other cells and molecules. Previous studies have sought to describe these effects using either random walk models or fractional order diffusion equations. Here we examine the transport of both a single agent and a population of agents through an environment containing obstacles of varying size and shape, whose relative densities are drawn from a specified distribution. Our simulation results for a single agent indicate that smaller obstacles are more effective at retarding transport than larger obstacles; these findings are consistent with our simulations of the collective motion of populations of agents. In an attempt to explore whether these kinds of stochastic random walk simulations can be described using a fractional order diffusion equation framework, we calibrate the solution of such a differential equation to our averaged agent density information. Our approach suggests that these kinds of commonly used differential equation models ought to be used with care since we are unable to match the solution of a fractional order diffusion equation to our data in a consistent fashion over a finite time period.
Resumo:
Ecology and evolutionary biology is the study of life on this planet. One of the many methods applied to answering the great diversity of questions regarding the lives and characteristics of individual organisms, is the utilization of mathematical models. Such models are used in a wide variety of ways. Some help us to reason, functioning as aids to, or substitutes for, our own fallible logic, thus making argumentation and thinking clearer. Models which help our reasoning can lead to conceptual clarification; by expressing ideas in algebraic terms, the relationship between different concepts become clearer. Other mathematical models are used to better understand yet more complicated models, or to develop mathematical tools for their analysis. Though helping us to reason and being used as tools in the craftmanship of science, many models do not tell us much about the real biological phenomena we are, at least initially, interested in. The main reason for this is that any mathematical model is a simplification of the real world, reducing the complexity and variety of interactions and idiosynchracies of individual organisms. What such models can tell us, however, both is and has been very valuable throughout the history of ecology and evolution. Minimally, a model simplifying the complex world can tell us that in principle, the patterns produced in a model could also be produced in the real world. We can never know how different a simplified mathematical representation is from the real world, but the similarity models do strive for, gives us confidence that their results could apply. This thesis deals with a variety of different models, used for different purposes. One model deals with how one can measure and analyse invasions; the expanding phase of invasive species. Earlier analyses claims to have shown that such invasions can be a regulated phenomena, that higher invasion speeds at a given point in time will lead to a reduction in speed. Two simple mathematical models show that analysis on this particular measure of invasion speed need not be evidence of regulation. In the context of dispersal evolution, two models acting as proof-of-principle are presented. Parent-offspring conflict emerges when there are different evolutionary optima for adaptive behavior for parents and offspring. We show that the evolution of dispersal distances can entail such a conflict, and that under parental control of dispersal (as, for example, in higher plants) wider dispersal kernels are optimal. We also show that dispersal homeostasis can be optimal; in a setting where dispersal decisions (to leave or stay in a natal patch) are made, strategies that divide their seeds or eggs into fractions that disperse or not, as opposed to randomized for each seed, can prevail. We also present a model of the evolution of bet-hedging strategies; evolutionary adaptations that occur despite their fitness, on average, being lower than a competing strategy. Such strategies can win in the long run because they have a reduced variance in fitness coupled with a reduction in mean fitness, and fitness is of a multiplicative nature across generations, and therefore sensitive to variability. This model is used for conceptual clarification; by developing a population genetical model with uncertain fitness and expressing genotypic variance in fitness as a product between individual level variance and correlations between individuals of a genotype. We arrive at expressions that intuitively reflect two of the main categorizations of bet-hedging strategies; conservative vs diversifying and within- vs between-generation bet hedging. In addition, this model shows that these divisions in fact are false dichotomies.
Resumo:
This is in continuation of our paper On the propagation of a multi-dimensional shock of arbitrary strength’ published earlier in this journal (Srinivasan and Prasad [9]). We had shown in our paper that Whitham’s shock dynamics, based on intuitive arguments, cannot be relied on for flows other than those involving weak shocks and that too with uniform flow behind the shock. Whitham [12] refers to this as misinterpretation of his approximation and claims that his theory is not only correct but also provides a natural closure of the open system of the equations of Maslov [3]. The main aim of this note is to refute Whitham’s claim with the help of an example and a numerical integration of a problem in gasdynamics.
Resumo:
This paper considers a multi-person discrete game with random payoffs. The distribution of the random payoff is unknown to the players and further none of the players know the strategies or the actual moves of other players. A class of absolutely expedient learning algorithms for the game based on a decentralised team of Learning Automata is presented. These algorithms correspond, in some sense, to rational behaviour on the part of the players. All stable stationary points of the algorithm are shown to be Nash equilibria for the game. It is also shown that under some additional constraints on the game, the team will always converge to a Nash equilibrium.
Resumo:
We examine the question of whether to employ the first-come-first-served (FCFS) discipline or the processor-sharing (PS) discipline at the hosts in a distributed server system. We are interested in the case in which service times are drawn from a heavy-tailed distribution, and so have very high variability. Traditional wisdom when task sizes are highly variable would prefer the PS discipline, because it allows small tasks to avoid being delayed behind large tasks in a queue. However, we show that system performance can actually be significantly better under FCFS queueing, if each task is assigned to a host based on the task's size. By task assignment, we mean an algorithm that inspects incoming tasks and assigns them to hosts for service. The particular task assignment policy we propose is called SITA-E: Size Interval Task Assignment with Equal Load. Surprisingly, under SITA-E, FCFS queueing typically outperforms the PS discipline by a factor of about two, as measured by mean waiting time and mean slowdown (waiting time of task divided by its service time). We compare the FCFS/SITA-E policy to the processor-sharing case analytically; in addition we compare it to a number of other policies in simulation. We show that the benefits of SITA-E are present even in small-scale distributed systems (four or more hosts). Furthermore, SITA-E is a static policy that does not incorporate feedback knowledge of the state of the hosts, which allows for a simple and scalable implementation.
Resumo:
A wiki, GeoGebra, and a screencasting service were combined to support the online mathematical collaboration of a Grade 10 class. This poster describes the tools employed and the steps taken to develop the skills and attitudes required for this blended learning experience.
Resumo:
Multimode laser emission is observed in a polymer optical fiber doped with a mixture of Rhodamine 6G (Rh 6G) and Rhodamine B (Rh B) dyes. Tuning of laser emission is achieved by using the mixture of dyes due to the energy transfer occurring from donor molecule (Rh 6G) to acceptor molecule (Rh B). The dye doped poly(methyl methacrylate)-based polymer optical fiber is pumped axially at one end of the fiber using a 532 nm pulsed laser beam from a Nd:YAG laser and the fluorescence emission is collected from the other end. At low pump energy levels, fluorescence emission is observed. When the energy is increased beyond a threshold value, laser emission occurs with a multimode structure. The optical feedback for the gain medium is provided by the cylindrical surface of the optical fiber, which acts as a cavity. This fact is confirmed by the mode spacing dependence on the diameter of the fiber.