976 resultados para zero tillage


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil management measures that increase the efficiency of organic matter cycling and maintain favorable soil structure are needed for improving soil quality. On the other hand, soil structure degradation due to inadequate soil management systems is widespread. Among the indicators of soil physical quality, saturated hydraulic conductivity and penetration resistance are thought to be sensitive to soil management system. The aim of this work was to study the influence of soil tillage system and organic fertilization on selected soil physical properties after the first year of treatment. The field work was conducted in Selviria, MS, Brazil on an Oxisol. The experimental design was randomized complete blocks with split-plots, with 12 treatments and 4 repetitions. Tillage treatments included conventional ploughing (CT) and direct drilling (DD). Fertilizer treatments were: 1) manure, 2) manure plus mineral, 3) traditional mineral 4) plant residues of Crotalaria juncea, 5) plant residues of Pennisetum americanum and 6) control plot. The plots were cropped to bean in winter and to cotton in summer, and both cultures were irrigated. After one year no significant differences between treatments in mechanical resistance and porosity were found. However, saturated hydraulic conductivity and infiltration were higher in the conventional tillage treatment at the 0.00-0.10 m depth. Moreover, an improvement in soil physical condition by organic fertilizers was shown.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this research was to study the effects of five different treatments of grass (Brachiaria decumbens) straw mulch on common beans (Phaseolus vulgaris L.): 0% (0 t.ha-1), 25% (2,25 t.ha-1), 50% (4,5 t.ha-1), 75% (6,75 t. ha-1) and 100% (9,0 t/ha) designed by randomized blocks, with four replicates. The irrigation was applied when minimum soil water potential were reached about - 30kPa. The water management based on tensiometers and soil water characteristic curve. A microsprinkler irrigation system was used. The experiment was set up at the Experimental Station of Embrapa Rice and Bean (Empresa Brasileira de Pesquisa Agropecuária Arroz e Feijão) at Santo Antonio de Goiás, Brazil, in a Dark - Red Latosol soil. The results showed: the bean yield and his components were not affected by treatments, except grain number/pod,. The mulch increased the water use efficiency and, consequently, decreased the number of irrigations when the mulch reached more than 50% straw mulch. The treatment with 100% of mulching presented the largest leaf area index and dry matter accumulation was not affected by mulching.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pressure caused by agricultural machinery traffic many result in soil compactation in no-tillage system. The aim of this work was to evaluate no-tillage system onset,time on some physical properties, index S and organic matter (OM) of an oxysol located in Jaboticabal, Sao Paulo State, Brazil. The experiment had completely randomized split-splot design. The treatments consisted of four no-tillage systems: no-tillage for 2 years, no-tillage for 4 years, no-tillage for 6 years and one natural wooded area. The evaluated layers were: Q-0.10m, 0.10-0.20m and 0.20-030m. The following were determined: soil porosity, soil aggregates, bulk density, index S and organic matter. The results were submitted to variance analysis and when there was a difference between averages, Tukey's test was used to compare them. The natural wooded area showed higher organic matter, macroporosity, hydraulic conductivity and Index S. There was no difference between the studied parameters, showing that the no-tillage system for six years was not enough to change the soil physical property.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The spatial variability of several soil attributes (bulk density, penetration resistance, water content, organic matter content and pH) as well as soybean yield have been assessed during the 2007/08 growing season, in Selviria (MS) in a Hapludox (Typic Acrustox), under no tillage. The objectives were to assess the spatial variability of soil and plant parameters at the small plot scale and to select the best soil attribute explaining most the variability of agricultural productivity. Soil and plant were sampled on a grid with 121 points within a plot of 25,600 m 2 in area and slope of 0.025 mm -1 slope. Medium and low coefficients of variation were obtained for most of the studied soil attributes as expected, due to the homogenizing effect of the no-till system on the soil physical environment. From the standpoint of linear regression and spatial pattern of variability, productivity of soybeans could be explained according to the hydrogen potential (pH). Results are discussed taken into account that the soybean crop in no-tillage is widely used in crop-livestock integration on the national scene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The soybean culture is part of crop rotation used by irrigators from the southwestern region of São Paulo State that perform no-tillage soil management as a form of sustainable soil use. The objective of this work was to evaluate the effect of this conservationist practice on physicalhydric properties, soil compaction, root development, and soybean culture production components in relation to the conventional management. The experiment was conducted at the Buriti-Mirim Farm, Angatuba, SP, in Brazil, using an area irrigated by a center pivot system divided into two types of soil management: conventional and no-tillage. Although the no-tillage management presented higher soil density, lower water available and lower soil resistance to penetration, both soil managements showed no difference in relation to root development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is much information on the adequate soil water matrix potential for returning irrigation in conventional soil tillage systems; however there is not enough information on the best soil water matrix potential for no-tillage production systems. This work aimed to study the effect of five irrigation levels on yield, soluble solids, and fruit acidity of the Hypeel tomato, cultivated for industrial processing and cropped on no-tillage system in Yellow Latosol. The experiment was carried out on a randomized block design with five treatments and four replications. The treatments consisted in different soil water matrix potentials for returning irrigation (m at 13cm of soil depth): -15, -30, -45, -60 and -75 kPa. The results obtained showed that the soil water matrix potential of -28.5 kPa resulted in maximum yields for tomato crop; whereas the value of -50.8 kPa resulted in the maximum fruit soluble solids concentration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil acidity and low natural fertility are the main problems for grain production in Brazilian 'cerrado'. Although lime has been the most applied source for soil correction, silicate may be an alternative material due to its lower solubility and Si supply, which is beneficial to several crops. This work aimed to evaluate the efficiency of superficial liming and calcium/magnesium silicate application on soil chemical attributes, plant nutrition, yield components and final yield of a soybean/white oat/maize/bean rotation under no-tillage system in a dry-winter region. The experiment was conducted under no tillage system in a deep acid clayey Rhodic Hapludox, Botucatu-SP, Brazil. The design was the completely randomized block with sixteen replications. Treatments consisted of two sources for soil acidity correction (dolomitic lime: ECC=90%, CaO=36% and MgO=12%; calcium/magnesium silicate: ECC=80%, CaO=34%, MgO=10% and SiO2=22%) applied in October 2006 to raise base saturation up to 70% and a control, with no soil correction. Soybean and white oat were sown in 2006/2007 as the main crop and off-season, respectively. Maize and bean were cropped in the next year (2007/2008). Products from silicate dissociation reach deeper soil layers after 18months from the application, compared to liming. Additionally, silicate is more efficient than lime to increasing phosphorus availability and reducing toxic aluminum. Such benefits in soil chemical attributes were only evidenced during bean cropping, when grain yield was higher after silicate application comparatively to liming. Both correction sources were improved mineral nutrition of all the other crops, mainly Ca and Mg levels and agronomical characteristics, reflecting in higher yield. © 2012 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nutrient use efficiency has become an important issue in agriculture, and crop rotations with deep vigorous rooted cover crops under no till may be an important tool in increasing nutrient conservation in agricultural systems. Ruzigrass (Brachiaria ruziziensis) has a vigorous, deep root system and may be effective in cycling P and K. The balance of P and K in cropping systems with crop rotations using ruzigrass, pearl millet (Pennisetum glaucum) and ruzigrass + castor bean (Ricinus communis), chiseled or not, was calculated down to 0.60 m in the soil profile for 2 years. The cash crops were corn in the first year and soybean in the second year. Crop rotations under no-till increased available P amounts in the soil-plant system from 80 to 100 %, and reduced K losses between 4 and 23 %. The benefits in nutrient balance promoted by crop rotations were higher in the second year and under without chiseling. Plant residues deposited on the soil surface in no-till systems contain considerable nutrient reserve and increase fertilizer use efficiency. However, P release from ruzigrass grown as a sole crop is not synchronized with soybean uptake rate, which may result in decreased yields. © 2013 Springer Science+Business Media Dordrecht.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Physical fractions (free light fraction, intra-aggregate light fraction and heavy fraction) of soil organic matter (SOM) are good indicators of soil quality for sustainable land use. The objective of this study was to evaluate the effect of cover crops on total organic carbon (TOC) and physical fractions of soil organic matter in soil under a no-tillage system (NTS) and a conventional tillage system (CTS, one plowing and two disking). A three-year field experiment was carried out as a cover crop-rice (Oryza sativa)-cover crop-rice rotation. Treatments included cover crops (Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and pearl millet (Pennisetum glaucum), fallow, till or no till. The SOM was physically fractionated in free light fraction (FLF), intra-aggregates light fraction (IALF) and heavy fraction (HF). The levels of C in whole soil were also evaluated, as well as C in the light fractions (FLF+IALF) and in the HF. Results indicated that concentrations of C in the FLF and IALF in surface soils (0-0.05m) were much higher (10.8 and 1.95gkg-1, respectively) than that in the 0.05-0.1m soil depth (7.68 and 1.54gkg-1, respectively) and in the 0.1-0.2m soil depth (4.98 and 1.24gkg-1, respectively). The NTS resulted in higher levels of FLF (12.2gkg-1) and IALF (2.19gkg-1) than with CTS (1.37-7.30gkg-1). Millet had the highest C (19.5gkg-1) and N (1.1gkg-1) concentrations in soil. There was an accumulation of TOC and total N in the surface soil with cover crops, and concentrations of TOC were higher in the HF (79.0%) than in the light fractions (21.0%). Although SOM changed little during the two years of this experiment, the various C fractions were significantly affected by the tillage treatments. We conclude that SOM physical fractionation allowed seeing significant differences caused by the soil management in the organic matter dynamics in a short period of time. © 2013 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agriculture provides food, fibre and energy, which have been the foundation for the development of all societies. Soil carbon plays an important role in providing essential ecosystem services. Historically, these have been viewed in terms of plant nutrient availability only, with agricultural management being driven to obtain maximum benefits of this soil function. However, recently, agricultural systems have been envisioned to provide a more complete set of ecosystem services, in a win-win situation, in addition to the products normally associated with agriculture. The expansion and growth of agricultural production in Brazil and Argentina brought about a significant loss of soil carbon stocks, and consequently the associated ecosystem services, such as flooding and erosion control, water filtration and storage. There are several examples of soil carbon management for multiple benefits in Brazil and Argentina, with new soil management techniques attempting to reverse this trend by increasing soil carbon (C) stocks. One example is zero tillage, which has the advantage of reducing CO2 emissions from the soil and thus preserving or augmenting C stocks. Crop rotations that include cover crops have been shown to sequester significant amounts of C, both in Brazilian subtropical regions as well as in the Argentinean Pampas. Associated benefits of zero tillage and cover crop rotations include flood and erosion control and improved water filtration and storage. Another positive example is the adoption of no-burning harvest in the vast sugarcane area in Brazil, which also contributes to reduced CO2 emissions, leaving crop residues on the soil surface and thus helping the conservation of essential plant nutrients and improving water storage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To establish the identity of Fusarium species associated with head blight (FHB) and crown rot (CR) of wheat, samples were collected from wheat paddocks with different cropping history in southern Queensland and northern New South Wales during 2001. CR was more widespread but FHB was only evident in northern NSW and often occurred with CR in the same paddock. Twenty different Fusarium spp. were identified from monoconidial isolates originating from different plant parts by using morphology and species-specific PCR assays. Fusarium pseudograminearum constituted 48% of all isolates and was more frequently obtained from the crown, whereas Fusarium graminearum made up 28% of all isolates and came mostly from the head. All 17 Fusarium species tested caused FHB and all 10 tested caused CR in plant infection assays, with significant (P < 0.001) difference in aggressiveness among species and among isolates within species for both diseases. Overall, isolates from stubble and crown were more aggressive for CR, whereas isolates from the flag leaf node were more aggressive for FHB. Isolates that were highly aggressive in causing CR were those originating from paddocks with wheat following wheat, whereas those from fields with wheat following maize or sorghum were highly aggressive for FHB. Although 20% of isolates caused severe to highly severe FHB and CR, there was no significant (P < 0.32) correlation between aggressiveness for FHB and CR. Given the ability of F. graminearum to colonise crowns in the field and to cause severe CR in bioassays, it is unclear why this pathogen is not more widely distributed in Australia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In most agroecosystems, nitrogen (N) is the most important nutrient limiting plant growth. One management strategy that affects N cycling and N use efficiency (NUE) is conservation agriculture (CA), an agricultural system based on a combination of minimum tillage, crop residue retention and crop rotation. Available results on the optimization of NUE in CA are inconsistent and studies that cover all three components of CA are scarce. Presently, CA is promoted in the Yaqui Valley in Northern Mexico, the country´s major wheat-producing area in which from 1968 to 1995, fertilizer application rates for the cultivation of irrigated durum wheat (Triticum durum L.) at 6 t ha-1 increased from 80 to 250 kg ha-1, demonstrating the high intensification potential in this region. Given major knowledge gaps on N availability in CA this thesis summarizes the current knowledge of N management in CA and provides insights in the effects of tillage practice, residue management and crop rotation on wheat grain quality and N cycling. Major aims of the study were to identify N fertilizer application strategies that improve N use efficiency and reduce N immobilization in CA with the ultimate goal to stabilize cereal yields, maintain grain quality, minimize N losses into the environment and reduce farmers’ input costs. Soil physical and chemical properties in CA were measured and compared with those in conventional systems and permanent beds with residue burning focusing on their relationship to plant N uptake and N cycling in the soil and how they are affected by tillage and N fertilizer timing, method and doses. For N fertilizer management, we analyzed how placement, time and amount of N fertilizer influenced yield and quality parameters of durum and bread wheat in CA systems. Overall, grain quality parameters, in particular grain protein concentration decreased with zero-tillage and increasing amount of residues left on the field compared with conventional systems. The second part of the dissertation provides an overview of applied methodologies to measure NUE and its components. We evaluated the methodology of ion exchange resin cartridges under irrigated, intensive agricultural cropping systems on Vertisols to measure nitrate leaching losses which through drainage channels ultimately end up in the Sea of Cortez where they lead to algae blooming. A throughout analysis of N inputs and outputs was conducted to calculate N balances in three different tillage-straw systems. As fertilizer inputs are high, N balances were positive in all treatments indicating the risk of N leaching or volatilization during or in subsequent cropping seasons and during heavy rain fall in summer. Contrary to common belief, we did not find negative effects of residue burning on soil nutrient status, yield or N uptake. A labeled fertilizer experiment with urea 15N was implemented in micro-plots to measure N fertilizer recovery and the effects of residual fertilizer N in the soil from summer maize on the following winter crop wheat. Obtained N fertilizer recovery rates for maize grain were with an average of 11% very low for all treatments.