976 resultados para yield components


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this work was to evaluate the efficiency of superficial applicationof limestone and slag, and their effects on soil chemical attributes and on yield and mineral nutrition of soybean, maize, and Congo signal grass (Urochloa ruziziensis). The experiment was carried out in a Rhodic Hapludox under no tillage system. The treatments consisted of the use of limestone or slag (silicates of calcium and magnesium) to correct soilacidity, and of a control treatment without the use of soil correctives. Rates were calculated in order to raise soil base saturation up to 70%. Soybean was sown in November 2006and maize in December 2007. Congo signal grass was sown right after the harvests of soybean and maize, and it was cropped during the offseasons. Soil chemical attributes were evaluated at 6, 12, and 18 months after the application of the corrective materials. Slag isan efficient source for soil acidity correction, being able to raise the exchangeable base levels in the soil profile faster than lime. Both limestone and slag increase dry matter yield of Congo signal grass, and grain yield of soybean and maize. Slag is more effective in improving maize grain yield.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sorghum is an excellent alternative to other grains in poor soil where corn does not develop very well, as well as in regions with warm and dry winters. Intercropping sorghum [Sorghum bicolor (L.) Moench] with forage crops, such as palisade grass [Brachiaria brizantha (Hochst. ex A. Rich) Stapf] or guinea grass (Panicum maximum Jacq.), provides large amounts of biomass for use as straw in no-tillage systems or as pasture. However, it is important to determine the appropriate time at which these forage crops have to be sown into sorghum systems to avoid reductions in both sorghum and forage production and to maximize the revenue of the cropping system. This study, conducted for three growing seasons at Botucatu in the State of São Paulo in Brazil, evaluated how nutrient concentration, yield components, sorghum grain yield, revenue, and forage crop dry matter production were affected by the timing of forage intercropping. The experimental design was a randomized complete block design. Intercropping systems were not found to cause reductions in the nutrient concentration in sorghum plants. The number of panicles per unit area of sorghum alone (133,600), intercropped sorghum and palisade grass (133,300) and intercropped sorghum and guinea grass (134,300) corresponded to sorghum grain yields of 5439, 5436 and 5566kgha-1, respectively. However, the number of panicles per unit area of intercropped sorghum and palisade grass (144,700) and intercropped sorghum and guinea grass (145,000) with topdressing of fertilizers for the sorghum resulted in the highest sorghum grain yields (6238 and 6127kgha-1 for intercropping with palisade grass and guinea grass, respectively). Forage production (8112, 10,972 and 13,193Mg ha-1 for the first, second and third cuts, respectively) was highest when sorghum and guinea grass were intercropped. The timing of intercropping is an important factor in sorghum grain yield and forage production. Palisade grass or guinea grass must be intercropped with sorghum with topdressing fertilization to achieve the highest sorghum grain yield, but this significantly reduces the forage production. Intercropping sorghum with guinea grass sown simultaneously yielded the highest revenue per ha (€ 1074.4), which was 2.4 times greater than the revenue achieved by sowing sorghum only. © 2013 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crops close to small water bodies may exhibit changes in yield if the water mass causes significant changes in the microclimate of areas near the reservoir shoreline. The scientific literature describes this effect as occurring gradually, with higher intensity in the sites near the shoreline and decreasing intensity with distance from the reservoir. Experiments with two soybean cultivars were conducted during four crop seasons to evaluate soybean yield in relation to distance from the Itaipu reservoir and determine the effect of air temperature and water availability on soybean crop yield. Fifteen experimental sites were distributed in three transects perpendicular to the Itaipu reservoir, covering an area at approximately 10 km from the shoreline. The yield gradient between the site closest to the reservoir and the sites farther away in each transect did not show a consistent trend, but varied as a function of distance, crop season, and cultivar. This finding indicates that the Itaipu reservoir does not affect the yield of soybean plants grown within approximately 10 km from the shoreline. In addition, the variation in yield among the experimental sites was not attributed to thermal conditions because the temperature was similar within transects. However, the crop water availability was responsible for higher differences in yield among the neighboring experimental sites related to water stress caused by spatial variability in rainfall, especially during the soybean reproductive period in January and February.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study evaluated the yield, components of production and oil content of two castor bean cultivars through drip irrigation with different water depths. The research was conducted in 2009 in an Oxisol clay in the experimental field in Dourados, Mato Grosso do Sul State. The experimental design was randomized blocks in factorial scheme with five water depths (0, 25, 50, 100 and 150% of evapotranspiration for drip irrigation) in two castor bean cultivars (IAC 2028 and IAC 80) with four replications. The irrigation schedule was predetermined up to two irrigations per week except on rainy days. The increase of irrigation provided significant increase in most components of production and crop yield without changing the oil content of seeds. The application of higher water depth increased yield by 80% in relation to the treatment that received no supplemental irrigation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Genotypic, phenotypic and environmental correlations were estimated for all possible pairs among eleven characters of tomatoes. Fifteen treatments including five parents and ten hybrids of Instituto Agronômico (IAC) tomato breeding program were evaluated using a randomized complete block experimental design, with tree replications in Itatiba, São Paulo state, Brazil, during 2005/2006. The following traits were evaluated: fruit yield per plant (FP), fruit number per plant (FN), average fruit weight (FW), cluster number per plant (CN), fruit number per cluster (FC), number of locules per fruit (NL), fruit length (FL), fruit width (WI), fruit wall thickness (FT), total soluble solids (SS), and total titratable acidity (TA). The genotypic (rG), phenotypic (rF) and environmental correlations (rA) for two pairs of plant traits were estimated using the Genes© program. High similarity was found among the estimates of genotypic and phenotypic correlations. Positive and high phenotypic and genotypic correlations were observed between FP and the traits FN, FW and FT, and these associations contributed for yield increasing. FW and FT contributed to yield increase and should be considered together as primary yield components in tomato. Positive values of the genotypic and phenotypic correlations revealed that FP influenced FN with high direct effect and significant positive correlation. These traits may be included as the main selection criteria for tomato yield improvement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Airén is the most worldwide spread white grape cultivar, high yielding, well adapted to hot, dry conditions, and not very sensitive to fungal diseases. Its largest growing region is La Mancha, where Airén has been traditionally bush trained, spur pruned and grown with no irrigation. However, grape growing has evolved to meet the need for higher yields and harvest mechanization; and modern cultural practices train grape vines to simple multi-wire trellis systems, cane pruned, and usually irrigated. The aim of the present study was to evaluate the yield and sugar accumulating capacities of Airén cultivar with regard to leaf area, and to assess the influence that different yield components have on yield. In 2014, five commercial irrigated vineyards, located in La Mancha, of different ages, and grafted onto different rootstocks were selected for this study. Canopy surface area (SA) was measured at maturity. Berry weight and sugar concentration were measured during ripening on a weekly basis. Yield and yield components were determined at harvest. Values for shoot density ranged 2.3-5.1 shoots/m2; SA, 0.6-1.1 m2/m2; yield, 20-40 t/ha; fertility, 1.1-1.7 bunches/shoot; bunch weight, 450-650 g; berry weight, 2.5-2.9 g; and sugar concentration, 17-21 ºBrix. The number of bunches per shoot was the yield component that had the greatest influence on yield. The number of berries was the main contributing factor to bunch weight. A lineal relationship between SA/yield and sugar concentration was observed, with values of SA/yield ranging from 0.20 to 0.45 m2/kg. A ratio SA/yield of approximately 0.4 m2/kg was needed to reach a value of 20 ºBrix. Hence it would be necessary a SA of 12000 m2/ha, under the conditions of this study, to achieve a 30 t/ha yield, and a sugar concentration of 20 ºBrix. These results are a step forward in the study of the Airén cultivar, being of help for grape growers in the center area of Spain in order to maximize crop yield and sugar accumulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study aimed to evaluate the effect of row spacing and nitrogen topdressing fertilization of two materials (genotype 07SEQCL441 CL and cultivar BRS Esmeralda) on the plant height, yield components, grain yield, and quality of an upland rice crop grown in a no-tillage system. Trials were conducted for two growing seasons under field conditions in a 3 x 4 factorial, randomized, complete block design, with four replications. For each material, treatments consisted of the combination of row spacing (0.225, 0.35, and 0.45 m) with nitrogen (N) applied as topdressing (0, 50, 100, and 150 kg ha-1). The lowest row spacing (0.225 m) for genotypes 07SEQCL441 CL and BRS Esmeralda provided a higher number of tillers, number of panicles m-2, and grain yield of rice. Increasing rates of N in the topdressing improved the rice grain yield for both cultivars, but for 07SEQCL441 CL, the grain yield was positively affected only to applications up to 50 kg N ha-1. Row spacing and N rates did not affect the rice grain quality. Therefore, these results indicate that the narrowest row spacing used (0.225 m) with N fertilization as topdressing increased the rice grain yield most in the no-tillage system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is a lack of researches that evaluate the development and nutrient accumulation in super early genotypes of common bean for the elaboration of fertilization programs. This study aimed at characterizing the development; N, P, K, Ca and Mg accumulation by leaves; grain yield; and yield components of super early genotypes of common bean. Field experiments were conducted in a randomized blocks design, with four replications. The treatments consisted of the IPR Colibri (control), CNFC 15873, CNFC 15874 and CNFC 15875 genotypes. Plants were sampled throughout the common bean development, being divided into leaves, stems and pods. After determining the dry matter, the contents of N, P, K, Ca and Mg accumulated in leaves were estimated. At harvesting, the grain yield and yield components were evaluated. The biomass accumulation in stems and leaves occurred until the flowering stage, and then it started in the pods until harvesting. The genotypes that absorbed more nitrogen and phosphorus had a higher grain yield. The average growing season of super early genotypes was 70 days (winter) and 63 days (summer). CNFC 15874 was the most productive genotype in the winter, with grain yield similar to the IPR Colibri cultivar (control). In the summer, CNFC 15873 and CNFC 15875 achieved grain yield similar to the IPR Colibri cultivar.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to determine the effect of pearl millet intercropped with other cover crops on mineral forms of N and urease activity in soil, nitrate reductase activity in the leaves of the follow-up rice crop, as well as the yield components of this rice crop. The experiment was performed in the year 2012/2013 at two locations of the Brazilian Cerrado.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to evaluate the production of biomass and grain cover crops, yield components, and grain yield of rice in Mozambique. The study was conducted in two sites located in the province of Cabo Delgado, in Mozambique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The response of vegetative soybean (Glycine max) to Helicoverpa armigera feeding was studied in irrigated field cages over three years in eastern Australia to determine the relationship between larval density and yield loss, and to develop economic injury levels. Rather than using artificial defoliation techniques, plants were infested with either eggs or larvae of H. armigera, and larvae allowed to feed until death or pupation. Larvae were counted and sized regularly and infestation intensity was calculated in Helicoverpa injury equivalent (HIE) units, where 1 HIE was the consumption of one larva from the start of the infestation period to pupation. In the two experiments where yield loss occurred, the upper threshold for zero yield loss was 7.51 ± 0.21 HIEs and 6.43 ± 1.08 HIEs respectively. In the third experiment, infestation intensity was lower and no loss of seed yield was detected up to 7.0 HIEs. The rate of yield loss/HIE beyond the zero yield loss threshold varied between Experiments 1 and 2 (-9.44 ± 0.80 g and -23.17 ± 3.18 g, respectively). H. armigera infestation also affected plant height and various yield components (including pod and seed numbers and seeds/pod) but did not affect seed size in any experiment. Leaf area loss of plants averaged 841 and 1025 cm2/larva in the two experiments compared to 214 and 302 cm2/larva for cohort larvae feeding on detached leaves at the same time, making clear that artificial defoliation techniques are unsuitable for determining H. armigera economic injury levels on vegetative soybean. Analysis of canopy leaf area and pod profiles indicated that leaf and pod loss occurred from the top of the plant downwards. However, there was an increase in pod numbers closer to the ground at higher pest densities as the plant attempted to compensate for damage. Defoliation at the damage threshold was 18.6 and 28.0% in Experiments 1 and 2, indicating that yield loss from H. armigera feeding occurred at much lower levels of defoliation than previously indicated by artificial defoliation studies. Based on these results, the economic injury level for H. armigera on vegetative soybean is approximately 7.3 HIEs/row-metre in 91 cm rows or 8.0 HIEs/m2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperatures have increased and in-crop rainfall decreased over recent decades in many parts of the Australian wheat cropping region. With these trends set to continue or intensify, improving crop adaptation in the face of climate change is particularly urgent in this, already drought-prone, cropping region. Importantly, improved performance under water-limitation must be achieved while retaining yield potential during more favourable seasons. A multi-trait-based approach to improve wheat yield and yield stability in the face of water-limitation and heat has been instigated in northern Australia using novel phenotyping techniques and a nested association mapping (NAM) approach. An innovative laboratory technique allows rapid root trait screening of hundreds of lines. Using soil grown seedlings, the method offers significant advantages over many other lab-based techniques. Another recently developed method allows novel stay-green traits to be quantified objectively for hundreds of genotypes in standard field trial plots. Field trials in multiple locations and seasons allow evaluation of targeted trait values and identification of superior germplasm. Traits, including yield and yield components are measured for hundreds of NAM lines in rain fed environments under various levels of water-limitation. To rapidly generate lines of interest, the University of Queensland “speed breeding” method is being employed, allowing up to 7 plant generations per annum. A NAM population of over 1000 wheat recombinant inbred lines has been progressed to the F5 generation within 18 months. Genotyping the NAM lines with the genome-wide DArTseq molecular marker system provides up to 40,000 markers. They are now being used for association mapping to validate QTL previously identified in bi-parental populations and to identify novel QTL for stay-green and root traits. We believe that combining the latest techniques in physiology, phenotyping, genetics and breeding will increase genetic progress toward improved adaptation to water-limited environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Environmental factors contribute to over 70% of crop yield losses worldwide. Of these drought and salinity are the most significant causes of crop yield reduction. Rice is an important staple crop that feeds more than half of the world’s population. However among the agronomically important cereals rice is the most sensitive to salinity. In the present study we show that exogenous expression of anti-apoptotic genes from diverse origins, AtBAG4 (Arabidopsis), Hsp70 (Citrus tristeza virus) and p35 (Baculovirus), significantly improves salinity tolerance in rice at the whole plant level. Physiological, biochemical and agronomical analyses of transgenic rice expressing each of the anti-apoptotic genes subjected to salinity treatment demonstrated traits associated with tolerant varieties including, improved photosynthesis, membrane integrity, ion and ROS maintenance systems, growth rate, and yield components. Moreover, FTIR analysis showed that the chemical composition of salinity-treated transgenic plants is reminiscent of non-treated, unstressed controls. In contrast, wild type and vector control plants displayed hallmark features of stress, including pectin degradation upon subjection to salinity treatment. Interestingly, despite their diverse origins, transgenic plants expressing the anti-apoptotic genes assessed in this study displayed similar physiological and biochemical characteristics during salinity treatment thus providing further evidence that cell death pathways are conserved across broad evolutionary kingdoms. Our results reveal that anti-apoptotic genes facilitate maintenance of metabolic activity at the whole plant level to create favorable conditions for cellular survival. It is these conditions that are crucial and conducive to the plants ability to tolerate/adapt to extreme environments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

为研究秸秆覆盖在宁南山区对春玉米生长及其土壤水分的影响,在宁夏彭阳县对三种不同秸秆覆盖处理方式进行了试验研究。对比分析了不同覆盖措施下春玉米的生长状况、产量及水分利用效率变化的关系。结果表明:采用秸秆覆盖方式可使春玉米的株高、穗位高、穗长、生物产量及经济产量等指标得到显著提高,土壤的蓄水保墒性能增强,水分利用效率提高,增产增效明显;与传统方式相比,整秸秆覆盖可使春玉米的产量及水分利用效率分别提高3.5%及16.5%。